
Arctoa (2015) 24: 431-451

doi: 10.15298/arctoa.24.35

INTRODUCTION

“No one can have an idea of the beauty and delicacy of

texture of this plant who has not seen it growing” – such a

described characteristic of Oedipodium griffithianum ap-

peared in the “Muscologia Brittanica” (Hooker & Taylor,

1827). This statement was considered so relevant to this

moss that it has been fully rewritten in “Bryologia Euro-

paea” (Bruch & Schimper, 1844). Indeed, the light green

color and juicy body seen in the twilight in rock niches

where Oedipodium grows provide an extraordinary im-

pression: it doesn’t look like any other moss. As we found

that the species was rather easy to cultivate, we were able

to observe its development which appeared to have many

unusual characters still incompletely or inexactly described

in literature. The leaf development of Oedipodium is the

focus of the present paper.
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Abstract

Leaf development in Oedipodium griffithianum was studied based on herbarium and living mate-

rial, using microscopic observations of plants at different stages of development and series of sections.

It turned out that the apical cell may lose its bifacial structure, thus the leaves develop the bilaterally

symmetric areolation pattern, similar to that seen in Oedipodium protonemata. Young leaves never

have zones of small, actively dividing cells in their basal parts, similar to those seen in leaves of most

other mosses. Contrary to the common pattern of leaf forming by means of groups of 44, 48, 88

cells (descending from a single cell), the leaf development in Oedipodium has an opportunistic model

of growth, where the cell divisions proceed randomly throughout the lamina, being not obviously

correlated one with another in time, nor having a definite direction and position where it is performed.

The leaves in Oedipodium are bi- to multistratose at very early stages of growth, not overlapping each

other by their corners and only later develop the basal decurrency. The similarity and possible affinity

of Oedipodium with the Upper Permian fossil mosses of Angaraland are discussed.

Резюме

Развитие листа Oedipodium griffithianum изучалось на живом и гербарном материале, с иcполь-

зованием световой и флуоресцентной микроскопии, а также серий анатомических срезов. Как

выясняется, апикальная клетка листа легко теряет свою обратнотреугольную форму и переходит к

делениям, приводящим к образованию билатереально симметричной клеточной сети, сходной с

таковой пластинчатой протонемы этого вида. В молодых листьях никогда не наблюдается зоны,

образованной мелкими, тонкостенными, активно делящимися клетками, характерной для ранних

стадий развития листьев большинства мхов. В противоположность нормальному развитию листа,

с образованием блоков 44, 48, 88 клеток (потомков одной клетки, поделившихся несколько раз

продольно и поперечно), в листьях Oedipodium реализуется совершенно другой механизм роста,

при котором отдельные деления клеток не согласованы между собой во времени, направлении

деления и положении друг относительно друга. Наиболее молодые листья Oedipodium многослойны

в своем основании, не налегают друг на друга углами основания и образуют низбегания только на

поздних стадиях развития. Обсуждается сходство и возможные родственные связи Oedipodium с

некоторыми образцами мхов, найденными в верхней перми Ангариды.
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Until recently, Oedipodium was not classified among

basal mosses and it was not evaluated as a “living fos-

sil”. Like in many other cases, the lack of peristome

has precluded the exact definition of its systematic po-

sition. This position was resolved by molecular phylo-

genic methods, which placed the genus among nemat-

odontous lineages (Hyvönen et al., 2004; Cox et al.,

2010). Other topologies, i.e. a topology summarized

from the recent molecular analyses (Shaw et al., 2011),

and another one based on 14-17 chloroplastic regions

(Chang & Graham, 2011), indicate its even more basal

position between Andreaea and nematodontuous groups.

Recent studies of sporoderm ultrastructure of Oedipo-

dium support the latter conclusion, i.e., close to basal

lineages (Brown et al., 2015; Polevova, 2015). Con-

trary to this, the study of placenta and water-conduct-

ing cells of Oedipodium griffithianum by Ligrone &

Duckett (2011) has shown that Oedipodium is more sim-

ilar with Tetraphis, Buxbaumia and arthrodontous moss-

es in this respect. These authors admitted the loss of

peristome in Oedipodium. On the other hand, Shima-

mura & Deguchi (2008) studied a series of sporophyte

sections and found nothing that may reject the idea that

Oedipodium is a primarily eperistomate moss. Howev-

er, all these discrepancies shift the position of Oedipo-

dium in phylogenetic trees to one or two nodes only, so

its placement among “living fossils” remains unchal-

lenged.

Our interest to study the leaf development in Oedi-

podium originally arose from the attempts to undertake

a retrospective reconstruction of cell divisions which re-

sult in the type of areolation of the mature leaf. In most

other moss leaves the apical cell is apparent and the sec-

tors cut off from it (see Scheme 1) are fairly well delim-

ited.

The principal way of moss leaf development in Oedi-

podium was described in the classical publications of

Schimper (1860) and Lorentz (1864), and also in the

subsequent comprehensive studies of Pottier (1925), and

Frey (1970, 1972). A synoptic picture of it is given in

Scheme 1. Apical cell in a series of divisions (usually 4-

7 to each side) produces the ‘mother cells’ of correspond-

ing sectors. The cells appeared earlier are situated at leaf

base, and the sectors formed by them are usually com-

posed of the largest number of cells. Being the earliest in

time of origin, the cells of the basal sector are the latest

in time of their differentiation (Scheme 1C). There are

only few exceptions from this pattern of leaf develop-

ment in the basal bryophyte lineages, including Takakia,

which has no entire leaves (Spence & Schofield, 2007),

and Andreaea (Pottier, 1925), and in fossil Protosphag-

nales (Maslova et al., 2012).

However in many leaves of Oedipodium we observed

an areolation pattern where the position of apical cell

was unclear and even the presence of a single apical cell

was questionable.

The problem of the apical cell in leaves and pro-

tonematal plates (= Protonemablättern by Correns, 1899

and Geobel, 1930) of Oedipodium is not new. It was in

a focus of study of Correns (1899) who found that both

stem leaves and protonematal plates grow by means of

the division of bifacial obtriangular or obtrapezoid api-

cal cell. At the later stages of leaf development, cells in

Oedipodium become lingulate in shape. Although the

observations of Correns (1899) are excellent and accu-

rate, and his illustrations are precise, his studies were

limited by herbarium material. Thus, some additional

studies of growth of fresh plants in culture may provide

a better understanding of growth pattern in this inter-

esting moss.

A comprehensive bulk of information on protonema

developmental stages was published by Duckett et al.

(2004) for a number of species with unusual protonema

structures. In this paper photographs of all stages of Oedi-

podium protonemata development were presented, al-

though their structure was only briefly explained in the

figure legends. The present study is aimed to better un-

derstand the developmental pathway of protonema in Oe-

dipodium by a comparison with the development of stem

leaves, and to determine their homology and features

peculiar among mosses.

MATERIAL AND METHODS

Cultivation

Living plants were delivered to us by V.E. Fedosov,

who collected them in September 2014 on Olkhovaya

Mountain, Primorsky Territory (voucher specimens in

MW). This locality was briefly described by Ignatov et

al. (2006). Plants with small amount of their original

substrate were deposited in Petri dishes on wet filter pa-

per, and cultivated with 10 hours light a day, with 12°C

associated with light time, and +7° in the “night”. No

additional nutrients were added.

Microscopic studies

Cultivated plants were photographed under stereom-
icroscope Olympus SZX16, the latter equipped with an
Infinity 4 digital camera. Some micrographs obtained
from several optical sections were composed using the
software package HeliconFocus 4.50 (Kozub et al., 2008).

For anatomy observations, material was taken from

cultivated plants. Apical parts of shoots were isolated,

leaves were removed. Prepared stems were de-aerated and

fixed in 2.5% glutaraldehyde in 0.05M PBS for 3 hours,

post-fixed with 1% osmium tetroxide in PBS, pH 6.8, for

6 hours. Then material was dehydrated through an as-

cending ethanol-acetone series to 100% acetone. After

that samples were embedded in araldite 6005 medium,

according to the protocol of manufacturer.

Sections were cut 2 ìm thick with glass knives, put

on glass slides without mounting medium, stained by

0.01% Berberin and photographed under Olympus FV-

1000 with 473 nm laser.



433On the leaf development in Oedipodium (Oedipodiales, Bryophyta)

Material for LSCM was taken both from dried her-

barium specimens and cultivating plants and was pre-

pared in two ways: 1) samples were fixed in 4% paraform-

aldehyde in 0.05M PBS pH 7.0 with 0.01% Triton-X,

0.01% Nonidet P-40 and 0.01% FB28 for 3 hours, then

stained by 0.1 mM DAPI for 15 min and replaced in

DMSO; 2) shoots without fixation were stained by 0.1

mM DAPI or 0.01% Berberin for 15 min, then both types

of samples were investigated under Olympus FV-1000

with 407 nm and 473 nm lasers.

Areoana analysis

Leaves of Oedipodium griffithianum from MHA her-

barium collections were used. They were photographed

under Carl Zeiss NU2 light microscope, using the Nikon

D70 camera (20003008 pixel). Three frames with po-

larized filters at 0°, 30° and 60° angles were taken for

each image, and their combined image provided a polar-

ized light “staining” of all cell walls, following the algo-

rithm developed before and analyzed in AREOANA pro-

gram (Ivanov & Ignatov, 2011; 2013).

Comparison with other mosses

Leaves most similar in shape and lamina areolation

to Oedipodium leaves were found among fossil mosses

of the order Protosphagnales. Illustrations and descrip-

tions of latter were partly published by Maslova & Igna-

tov (2013), but some newly obtained fossil material is

described here for the first time. Its origin and prepara-

tion are described in Maslova et. al. (2012).

OBSERVATION

Overall growth

Plants grown in Petri dishes were partly well-developed,

with broad leaves similar to those characteristic for the

species seen in nature (Figs. 1, 3, 5). On the other hand,

on the same piece of soil many plants had only very nar-

row leaves (Figs. 1, 6, 23), growing in delicate rosettes.

Leaf-like protonematal plates also appeared in abundance.

They looked like single leaves, growing individually and

producing laterally either another plates or rosette plants

with more or less narrow leaves (Figs. 20, 22-24). Protone-

Scheme 1. Moss leaf de-

velopment. A: from Schim-

per (1860), with order of cell

divisions according to  alpha-

bet; B: from Donskov (un-

publ.), with order of cell di-

visions marked by colors and

abbreviations of sectors ac-

cording to Frey (1970); C:

young leaf of Physcomitrium

pyriforme, showing still un-

differentiated cells of earlier

formed proximal sectors and

differentiated cells of distal

sectors.

matal plates developed rhizoids at their bases, which looked

exceedingly stiff and rigid, thus the plants were seen stand-

ing on them, as on stilts, and keeping the base of the ro-

settes or individual leaves above the ground (Fig. 6b). Oc-

casionally young plants originated on leaves of narrow-

leaved plants were seen as well. Lenticular gemmae were

produced abundantly in axils of upper leaves (Figs. 3-4),

or occasionally upon different parts of leaf body, for exam-

ple, on tips of narrow leaves (Fig. 2) or leaf margin (Fig.

38). We also observed the rather easy propagation of the

gemmae. Being placed in Petri dishes on wet filter paper

without any nutrients, they started to propagate in 2-4 weeks

in the same environments as the adult plants.

Protonematal plates

Many publications describe this genus as having

thallose protonema (Ligrone & Duckett, 2011; Crum,

2007, etc.). However, contrary to the case of Sphagnum

where protomena becomes thallose almost immediate-

ly after spore propagation, the ordinary filamentose pro-

tonema exists in Oedipodium as well. Its cells often are

unusually short and sometimes illustrated as a bead-

like threads (Goebel, 1930; Crum, 2001), but we obser-

ved also longer cells of ca. 8:1 as well (Fig. 24). The

cases where cells are getting shorter (Figs. 7-9) indi-

cate a tendency towards the plate formation. The short

upper cell (Fig. 9) may divide longitudinally (Fig. 8) to

become the biseriate plate form (Fig. 10). In the course

of elongation, cells may divide as shown in Fig 11, sep-

arating a smaller cell inwards. It seems that, by means

of such divisions, the plate becomes 4-6- or more seri-

ate in form (Figs. 13-16).

Periclinal divisions were observed in such protone-

matal plates as well. One example is shown in Fig. 12:

central part of this tetraseriate plate looks turgid, likely

due to bistratose structure in the median part. In a num-

ber of protonematal plates of 10-20 cells wide we found

bi- to tristratose areas near their bases (cf. Fig. 16). This

costa-like median part is formed of homogeneous cells,

as well as costa in leaves (cf. Fig. 42).

A

B C
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Figs. 1-6. Cultivated plants of Oedipodium griffithianum. 1: plants on wet soil; 2: narrow leaf with the cluster of lenticular

gemmae near its apex; 3: upper leaves with abundant lenticular gemmae in their axils; 4: lenticular gemmae in axil of condupliacte

leaf at stage comparaba to that in Fig. 5; asterisk marks areolation that look regular, but in fact ut usn’t (see discussion in Fig.

444)s; 5: apical part of stem covered by conduplicate leaf; 6: narrow protonematal plates with young gametophores, appearing

laterally, as in 6a  (cf. Figs. 22-24) or unbranched (6b); rosette in 6c is composed by three leaf-like structure, two narrower, similar

to protonematal plates and one shorter, having shorter cells and lacking inflated cells in the marginal row of cells.
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200 m 0.5 mm 0.5 mm
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Figs. 7-16. Protonema of Oedipodium griffithianum.

7: filamentose protonemata and early stage of plate for-

mation; 8: longitudinal division of upper cell in fila-

mentose protonemata; 9: short upper cell of filamentose

protonemata; 10: bi- to tetraseriate protonematal plates;

11: formation of triseri-

ate plate due to separat-

ing of smaller cell in-

wards (arrowed); 12:

small plate with puta-

tively bistratose median

part; 13-15: 4-6-seriate

protonematal plates,

showing variation in

areolation; 16: protone-

matal plate with tristra-

tose ‘costa’, shown in

cross-section (16a).

50 m
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Figs. 17-24. Branching and outgrowths in Oedipodium griffithianum. 17-18: lobes at leaf margins; 19: bilobate leaf with

multistratose costa, marked by asterisk [see also discussion in the text]; 20, 22, 24: narrow protonematal plates with young shoots

developing from their margins; 21: protonematal plate with some cells at margin enlarged and inflated: those are putatively

gametophore initials. 23: two rosettes of narrow-leaved plants with young shoots upon their leaves; close up of the latter are in

frames, showing that in case of 23a the leaf marked by asterisk is developed on leaf margin (close up presents frontal and lateral

views), while in 23b it is originated on leaf surface at a certain distance from the leaf margin.
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m



437On the leaf development in Oedipodium (Oedipodiales, Bryophyta)

2625
Figs. 25-26. Early stages of development of lateral innovation on stem in Oedipodium griffithianum. 25: bud with one leaf

larger than other leaves; 26: ‘pro-gemma’ filament formation among young leaves (marked by asterisk).

50 m 50 m

Figs. 27-29. Lenticular gemmae of Oedipodium griffithianum. 27: young gemma with bifacial apical cell; 28-29: isolated gemmae

with proliferating leaves.

292827

20 m 50 m50 m

Along with entire and elongate protonematal plates,

Duckett et al. (2004) illustrated a few deeply lobate ones

(cf. Figs. 5f, h in their publication). Similar structures

were found in our specimens as well. One of them is

shown in Fig. 19. However, it differs from plates given

by Duckett et al. (l.c.) in cell outlines indicating the pres-

ence of multistratose area (marked by asterisk in Fig. 19),

which is very similar to costa in leaves. Various out-

growths on sides of leaves, both narrow and fully devel-

oped, occasionally appear (Figs. 17-18). Similar struc-

tures were observed in herbarium collections from na-

ture as well.

Conspicuously inflated cells are often seen at margin

of some plates (Figs. 21). These cells may proliferate into

foliose structures. Such secondary structure may comprise

an individual leaf (Fig. 22) or form small plants with a

rosette of narrow leaves (Figs. 20, 24). In fact, a careful

study of the former case, where the leaf looks like a soli-

tary one (Fig. 22) almost always allows finding of inflated

cells at its base and/or additional very small leaves (Fig.

6a, pointed by thin line). It suggests that all such single

leaves are, in fact, juvenile plants that produce so far only

one leaf, while the formation of the next leaf is strongly

delayed. Observation of the development of ‘protonemata’

from the lenticular gemmae supports this proposition.

In some plants, the innovations appear from narrow

plates. They are very narrow and posess numerous in-

flated cells along margin, similar to those shown in Fig.

21. Such cases comprise the most certain variant of the

branched protonemata. Thus, the main distinction be-

tween protonematal plates and narrow leaves can be as-

sumed as the presence of such inflated marginal cells,

easily producing small plants. However, exceptions were

observed: some narrow leaves (in plants growing as ro-

settes) also may develop small plants on their leaf sur-

face and leaf margin (Fig. 23), making the distiction be-

tween given foliose structures quite vague in some cases.

Another case, where the problem of distinguishing

protonemata and leaves appears is as follow. Duckett et

al. (2004) indicated that the mature protonematal plates in

Oedipodium are lobate, similar to that in Fig. 19. In our case,

however a similar lobate structures were found only at the

*
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Figs. 30-34. Leaf-like proliferation of lenticular gemmae of Oedipodium griffithianum. 30: first cutting of inner upper cell angle;

31-34: different stages of development of juvenile leaves with multiseriate laminae; 33: gemmae propagating into shoot with two

larger leaves and bud with very small leaves at their bases; Fig 34a shows axillary hairs behind the base of leaf in Fig. 34.

3432

31

30

10 m 20 m

10 m 100 m

20 m

33

�
lowermost part of small shoots (i.e. in place where ordinary

leaves occur). The upper leaves from the same shoot are shown

in Figs. 51-53.

Lenticular gemmae and their propagation

The leaves propagated from gemmae are, indeed, the

easiest to observe, as they are quite flat and not covered

by surrounding leaves, contrary to upper stem leaves. Both

Correns (1899) and Duckett et al. (2004) illustrated such

leaves grown from gemmae. They were illustrated as bis-

eriate by Correns (1899), while the light microscope pho-

tograph given by Duckett et al. (2004) showed a broader

structure with a larger number of cells in width.

The gemmae themselves are usually developed near

stem apex (Figs. 3-4). In the course of their formation,

they pass through the two-celled stage (similar to the

early stage of thallose protonema development shown in

Fig. 8) and illustrated by Correns (1899, Fig. 86) and

Goebel (1930,  Fig. 1048). Both Correns and Goebel de-

scribed young gemmae of Oedipodium as essentially sym-

metric structures, with two equal or subequal cells situ-

ated side by side at their tops. We found however that at

least in some cases they have a bifacial apical cell simi-

lar to the leaf apical cell (Fig. 27). A putatively earlier

stage of gemmae formation is shown in Fig. 26: among

leaves of a young lateral bud there is a filamentose stric-

ture. We are inclined to interpret this filament as a pro-

gemma by two reasons. First, no other plant organs are

filamentose, except axillary hairs (which cannot be two-

celled at base like here) and rhizoids (which have ob-

lique cell walls). Second, we observed gemmae clusters

in a similar position on some other plants.

The leaf-like structures growing out of gemmae are

shown in Figs. 30-34. They have obvious bifacial apical

cell as in leaves, and also possess a peculiar pattern of cell

divisions. In young moss leaves cell divisions are usually

subequal. More rarely a division may cut off one angle of

subquadrate cell by an arching cell wall, but in this case it

is an inner lower angle (according to our observations in

other mosses). In Oedipodium the inner upper cell angles

are cutting off at early stages of such leaf development

(Figs. 30, 32), resulting in its widening to a tetraseraite or

wider structure (Fig. 34).

Correns (1899), Goebel (1930) and Duckett et al.

(2004) considered foliose structure developed from Oedi-

�
�

�

a 10 m
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3635

a

4039

3837

Figs. 35-40. Early stages of leaf development in Oedipodium griffithianum. 35-36 (two sections of 2 m with one between

them not shown): first leaf that is moslty bistratose (cf. Fig. 41) [LAC – leaf apical cell; SAC – stem apical cells]; Fig. 36 shows

the most recent division of stem apical cell (arrowed); 37: stem leaf at relatively early stage of development, comparable with that

in Fig. 39; 38a: apical part of stem with two young leaves shown in Fig. 38 and 40, and small hardly seen leaf magnified in Fig. 39;

39: leaf with bifacial apical cell and three first merophytes at each side; 40: recently formed wall in leaf border cell (arrowed).
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Fig. 41. Transverse sections of stem apical zone of Oedipodium griffithianum. The shown part of series is 22 m long

(sections are 2 m thick; letters are sequential, and lacking letter indicates that the corresponded section is not shown).

Numerals indicate leaf numbers, apical cell is marked by asterisk, ah – axillary hairs. Note that even 3d leaf has almost no

unistratose part (cf. Figs. 46 and 53).
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45

a

43

Figs. 42-45. Selected transverse sections of Oedipodium griffithianum: at 50 m above apical cell (Fig. 42), at 20 m above

apical cell (Fig. 44), and at 2-4 m below its top (Figs. 43, 45). Fig. 42 shows conduplicate leaf structure (cf. Fig. 5) that provides

an efficient protection for the apical cell. Figs. 45 and 45a show subequal division of the stem apical cell (arrowed).

50 m

20 m

podium gemmae to be protonemata. However, we saw

small other juvenille leaves (cf. Fig. 31) and axillary hairs

(Fig. 34) developing near their bases. They surround a

conspicuously differentiated (albeit small) cell that can

be assumed as a stem apical cell. And finally, the propa-

gated gemmae often have more than one leaf (Fig. 33).

Thus, these ‘protonemata’ can be interpreted rather as

leaves of young and very short shoots.

Stem leaves

Direct observations of young leaves were made at the

stage of 40-50 μm long when three cells to each side of

the leaf apical cell were cut off. Small leaves were de-

tached and examined by means of LCSM. Three sectors

on each side of leaf can be recognized (Fig. 39). Earlier

stages of leaf development were observed in longitudinal

sections, partially represented in Figs. 35-37, and in three

complete series of transverse sections, partially shown in

Fig. 41 and Figs. 42-45.

In general, the observed arrangement of cells in young

leaves of Oedipodium fits the classical scheme of leaf devel-

opment in mosses (Scheme 1 in page 433). However, in

transverse sections, unistratose lamina is present only in

the uppermost part of leaf primordium, and already since

15 m from its apex, the young leaf becomes partially bis-

tratose and at the level of apical cell it is completely bistra-

tose (Fig. 41). Thus, in Oedipodium unistratose lamina can-

not develop from the cells of leaf base corners as it happens

in most other mosses (Frey, 1970), and its formation starts

from the marginal cells where divisions produce cells in-

wards as can be deduced from e.g. Figs. 41 and 46.

42
50 m

44
50 m

*
�

�
*
1
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46

51

5049

4847

52

20 m 20 m20 m

200 m

50 m

50 m

20 m

53
200 m

Figs. 46-53. Stem leaves of Oedipodium

griffithianum at different stages of devel-

opment. 46, 49: broadening of the lamina

due to the irregular cell divisions; 47, 48:

rare case of more or less regular cell groups

at leaf margin; 50: specific areolation pat-

tern with octagonal cell in the middle; 51-

53: leaves with irregular areolation with-

out apparent groups of cells.
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56

55

54

50 m

20 m

50 m

57

58

6059

Figs. 54-56. Young

leaves with regular cell

areolation. 54: Rhizo-

mnium andrewsianum;

55, 56: R. punctatum.

Figs. 57-60. Digitized leaf areola-

tion of Rhizomnium tuomikoski (57),

Mnium stellare (58), Hypopterygium

flavolimbatum (59) and Splachnum

vasculosum (60) with cells marked by

dots of different color: octagonal – blue;

heptagonal – yellow; hexagonal – red,

pentagonal – green, tetragonal – black.

0.5 mm

0.5 mm

0.5 mm

1 mm
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The leaf border in Oedipodium is peculiar in cell divi-

sion pattern: its large, ca. 25 m wide cells undergo di-

vision into ‘slices’ 5 m wide (Fig. 40). It is especially

interesting because 5 m is the size of young, actively

dividing cells in growing leaves of all other mosses which

we studied. Usually a zone of such ‘mashed cells’ with

still unclear outlines occurs in basal leaf corners, while

the upper leaf portion has much thicker cell walls at the

same stage (Scheme 1C, page 433). However in Oedipo-

dium the absence of unistratose basal leaf corners at the

early stage of leaf development leaves no room for such a

meristematic zone.

Observations on series of sections (Fig. 41) demon-

strate the stages of young leaf formation. The costal area

is strong and the lamina is developing at narrow angle,

resulting in almost a conduplicate leaf structure (cf. Figs.

5 and 42). Such shape seems to be quite functional for

Oedipodium, providing efficient protection to the stem

apical cell, gametangia and developing gemmae.

The subsequent broadening of the lamina results from

the cell divisions between the border and costa. Oedipo-

dium does not have any regularity in time and direction

of cell divisions in the main part of lamina (Figs. 49-53).

Only in few leaves in their distal parts more or less reg-

ular groups of 42 cells were observed at margins (Figs.

47-48). A regular areolation might be assumed from the

observations under stereomicroscope (Fig. 4: asterisk),

however cells of the same leaves under compound mi-

croscope look irregular (cf. Figs. 49-50).

Fig. 51 illustrates the position of the most recent di-

visions, which are marked by much lighter cell walls in

comparison with more firm walls of older cells. They are

fairly randomly spread throughout the lamina, contrary

to examples of Rhizomnium leaves shown in Figs. 54-56.

The latter pattern is characteristic for most other mod-

ern moss species; more illustrations are published by, e.g.,

Frey (1970, 1972), Donskov (2015), etc.

The broadening of the leaf itself includes also the

broadening of leaf base and expansion of basal decurren-

cy, so the development approaches the state common for

most mosses.

Areoana-analysis

The principal scheme of leaf development (Scheme 1

in page 433) is universal for all mosses, with apparently

the only exceptions of Andreaea and Takakia. The im-

plementation of this pattern of cell divisions results in

leaf lamina composed of sectors of cells, described in

details by Frey (1970). Each sector originates from a sin-

gle cell and often is recognizable as clearly outlined

groups of 44, 48, 88, etc. In many cases the digi-

tized images of the lamina areolation with the use of

Areoana-program (Ivanov & Ignatov, 2011, 2013) allow

the visualization of such groups simply by marking the

numbers of angles seen in each cell. The method of dig-

itizing in Areoana analysis approximates the cell as a

polygon where angles are the points of joining of three

(more rarely of four) cell walls. Thus, the number of an-

gles (or, what is the same, the number of sides) is a

straightforward procedure. Then, if all cells with 4, 5, 6,

7, and 8 angles are marked by different colors, one may

see the picture like Figs. 57-60. The mentioned groups

originated from a single cell (i.e. a rather homogeneous

groups of 44, 48, 88 cells) appear to be enriched by

hexagonal cells, while borders between them have high-

er percentage of penta- and heptagonal cells. This rule

will be discussed in details elsewhere, while here we just

provide examples of how it looks. At the same time, it

is easily seen that Oedipodium has a strikingly differ-

ent areolation (Figs. 61-65). Groups of hexagonal cells

are absent, or at best, they are small and arranged near

the leaf margin. This structure corresponds with the ‘op-

portunistic’ growth pattern illustrated above (Figs. 49-

50) where the cell divisions are random in time and

space, unlike, e.g., those observed in Rhizomnium (Figs.

54-56).

Distinction between protonematal plates and leaves

The description of protonematal plates given above al-

ready  pointed the problem of differentiation of these two

structures. Although the ultimate difference would be that

protomenata never bears gametangia, this character in not

practical for sorting out small innovations. Some addi-

tional aspects of this problem are discussed here.

Correns (1899) pointed that both protonematal plates

and leaves develop by means of division of bifacial api-

cal cell. He also admitted that at later stages of develop-

ment the protonematal leaves may have distal ends with-

out apparent bifacial apical cell. However, the only one

unequivocal bifacial apical cell was illustrated by him

for the ‘protonemata’ deriving from the lenticular gem-

ma (Correns, 1899, Fig. 85). We consider such struc-

tures as young leaves, as discussed above.

Correns  (1899, Fig. 87) illustrated one obtrapezoid

cell at the apex of protonematal plate similar to those shown

in the present paper in Figs. 11-15. Althought this cell is

fairly oblique and has an aspect of the leaf apical cell, the

areolation produced by it does not fit cell arrangement typ-

ically developed in moss leaves (Scheme 1). The areola-

tion in Fig. 87 (Correns, l.c.) is essentially bilaterally sym-

metric (reminiscenting the areolation described for An-

dreaea, e.g. by Goebel (1930) and Crum (2001).

Correns did not specifically discussed if bifacial api-

cal cell is universally present in stem leaves, which is

usually consided as a ‘default’ character state in all moss-

es. The present study reveals that this is not always so.

Some old well-developed leaves have distal part like

that shown in Fig. 66, in which the place where the

apical cell would be expected (with corners marked by

asterisks) is occupied by a sector of regularly differenti-

ated cells. Similar cases, however, occur in smaller

leaves and sometimes even very young leaves near stem

apex have no bifacial apical cell, but cells, which were

called by Correns as “lingulate” (Fig. 70 and cf. with
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61 62

65

6463

Figs. 61-65. Digitized leaf lamina areolation of Oedipodium griffithianum with

cells marked by dots of different color: octagonal – blue; heptagonal – yellow;

hexagonal – red, pentagonal – green, tetragonal – black. Note the absence of

regular groups of hexagonal cells as compared with leaves in Figs. 57-60.

0.5 mm

0.2 mm
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0.2 mm
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7170

696867

66

Figs. 66-71. Stem leaves of Oedipodium griffithianum showing apical part without apparent bifacial apical cell. Leaves 70-71

were taken from apical part of well developed broad-leaved plants, however no apparent bifacial cells were found. In Fig. 70 two

equal uppermost cells recently underwent equal divisions (arrowed).
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7776

7574

7372

Figs. 72-77. Leaves of Oedipodium griffithianum showing areolation in subapical part; pictures were made: 72 – under stere-

omicroscope, 73 – under compound light microscope, from living plant; 74 – under compound light microscope, from herbarium

material; 75 – under LCSM, from living material, with berberin staining. Figs. 76-77 illustrate apparent apical cell surrounded by

5 and 6 cells correspondingly.
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79

81

8078

Figs. 78-80 & 86: leaves of fossil Permian plants; Figs. 81-83:

digitized images of leaves shown in Figs. 78-80; 84-85: Oedipo-

dium griffithianum, leaves of a small plant grown up from gemma.

Fig. 78: 32M_15_3_1; Fig. 79: 32M_9_15_1; Fig. 80:

32M_11_19_5; Fig. 86: 32M_11_16_4.
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Fig. 69). We cannot totally reject the artifact from the

cultivation, but, at least sometimes, such ‘wrong’ stem

leaves did appear on broad-leaved plants and they looked

rather similar to those found in nature. This is certainly

not always so and in some leaves the apical cells is appar-

ent, albeit usually surrounded by 4-6 cells (Figs. 76-77).

Summing up, the structural difference between pro-

tonematal plates and leaves in Oedipodium is extremely

subtile. The more observations are made, the more simi-

larities appear. Contrary to that, in Sphagnum and Tetra-

phis there is little in common between the leaf lamina ar-

eolation and the cell areolation of thallose protonemata.

Gemmae are especially enigmatic in Oedipodium, com-

bining properties of leaf (the presence, albeit occasional,

of bifaciual apical cell, Fig. 27) and of protonemata, as

they are able to produce leafy shoots. Having such poten-

tials, gemmae might serve as a good model object, consid-

ering that from the developmentalistic approach, the stem,

leaf and protonema are developed from ‘the stem cells’ of

diffenret types (Kofuji & Hasebe, 2014).

Cell walls

There is a temptation to correlate extreme plasticity

of leaf development in Oedipodium with its cell surface

structure. The granulose cellular surface is well-known

in Oedipodium, however, it probably was never shown

that such granulose structure exists also on internal cell

walls (Fig. 73). Cell walls can be assumed as rather soft,

easily modifiable by pressure from neigboring cells, caus-

ing dents at places of their contacts (Fig. 74). If this prop-

osition is true, it may explain that in living state cells

look quite inflated (Fig. 72), provinding plants with ‘juicy’

(Hooker & Taylor, 1827) or ‘fleshy’ (Crum, 2007) tex-

ture. Further investigations are needed for better under-

standing of Oedipodium cuticle properties.

COMPARISON WITH OTHER MOSSES

As it was shown above, Oedipodium has a number of

unique features in its leaf development. The unusual

growth pattern results in the development of leaves with

very narrow base. Among other mosses, a more or less

narrowly attenuate base occurs in Splachnaceae and

Mniaceae, but both these groups are characterized by

distinct sectors of their leaf areolation (Figs. 57-58 &

60) observed during the development.

Maximal similarity with Oedipodium can be demon-

strated in some Protosphagnalean fossils dated from the

Upper Permian. The latter was recently a subject of pub-

lication of Maslova et al. (2012) and Maslova & Ignatov

(2013). The problematic taxonomy of Protosphagnalean

fossils at the generic level precludes their exact naming

so far, as discussed by Maslova & Ignatov (2013), while

the position among the order Protosphagnales is unequiv-

ocal.

Being fragmentary, the Protosphagnalean fossils pro-

vide only a limited number of characters for a compari-

son, but some of them are conspicuously similar to that

observed in Oedipodium:

1) leaf shape (Figs. 78-80), spatulate, with gradually

attenuate long base (cf. leaf shape of Oedipodium from

Figs. 61-65);

2) subconduplicate young leaves (Figs. 87, 89), sim-

ilar to young leaves of Oedipodium (Figs. 5, 42);

3) leaf apical cell is unapparent, and its place is occu-

pied by a pair of elongate rectangular cells (Fig. 87) [com-

pare with Figs. 68-69] or apical cell is surrounded by

five cells (Fig. 88);

4) cuticle surface is finely granulose (Fig. 88), com-

pare with Figs. 73-74 and 76-77; this character requires

additional studies, as fossil material may posses numer-

ous artifacts.

5) one ovoid body found in the same deposits with the

leaves (Fig. 90) of Protosphagnalean fossils is quite simi-

lar to lencticular gemmae of Oedipodium in size and shape

and has a number of somewhat enlarged cells at margin, a

reminiscence of the Oedipodium case (Figs. 28-29).

The differences in leaf morphology observed between

the Protosphagnalean fossil material and Oedipodium

include:

1) more apparent groups of the hexagonal cells (Figs.

81-83);

2) leaves of Protosphagnalean mosses have a very

narrow insertion, not overlapping each other by their

decurrent bases (Figs. 92-94). Although mature leaves

of Oedipodium have normally a decurrent base, the un-

usually narrow base of young leaves requires a detailed

study of this character.

At the moment, no final conclusion is possible for

the putative affinity of Oedipodium with Protosphagnale-

an mosses, and their similarity requires additional atten-

tion. Characters mentioned above in the comparison of

Oedipodium with the Permian plants are not widely used

and accepted in modern day moss systematics, and their

potential usefulness remains unknown.

Finally, a certain caution is needed in this compari-

son because it is difficult to exclude some anomalous

growth pattern caused by cultivation. However out at-

tempts to find any difference between living and herbar-

ium material for the leaf apical cell and the lamina area-

olation gave nothing.
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