LIVERWORT OIL BODY DIVERSITY IN PACIFIC ASIA
РАЗНООБРАЗИЕ МАСЛЯНЫХ ТЕЛЕЦ ПЕЧЕНОЧНИКОВ В ПРИТИХООКЕАНСКОЙ АЗИИ

VADIM A. BAKALIN1, KSENIA G. KLIKOVA1, VAN SINH NGUYEN2, DANIIL A. BAKALIN3 & SEUNG SE CHOI4*

ВАДИМ А. БАКАЛИН1, КСЕНИЯ Г. КЛИМОВА1, ВАН ШИНЬ НГУЕН2, ДАНИИЛ А. БАКАЛИН3, СЫНГ СЭ ЧЕ4*

Abstract
This paper summarizes data on the oil body characteristics of liverworts sampled from Pacific Asia and provides 1032 photographs of living cells in 572 species and 6 infraspecific taxa (1 subspecies and 5 varieties) collected mostly in Northeast, East and Southeast Asia. Several cases of oil body characteristic variations may imply taxonomic differences between populations from geographically remote areas that are now treated as belonging to the same taxon.

KEYWORDS: East Asia, Hepaticae, liverworts, morphology, oil bodies, taxonomy.

CONTENTS

Material and Methods	Lophocoleaceae – 364–393	221	267-270
Discussion	Plagiochilaceae – 394–479	226	270-280
Catalogue by families (with figure numbers)	Jamesoniellaceae – 480–485	227	280
Treubiaceae – 2	Cephaloziaceae – 486–505	227	280-282
Haplomitriaceae – 3–5	Cephalozieillaceae – 506–519	227	283-284
Monosoleniaceae – 6, 7	Obtusifoliaceae – 520, 521	227	284
Calyculariaceae – 12–14	Lophoziaiaceae – 632–665	228	297-300
Makinoaceae – 15, 16	Anastrophyllaceae – 666–711	228	300-305
Moereckiiaceae – 21–24	Balantiopsidaceae – 720, 721	229	306
Lejeuneaceae – 164–274	Solenostomataceae – 835–951	244	319-332
Ptilidioaceae – 275, 276	Endogemmataceae – 952–955	245-257	332
Neotrichocoleaceae – 277, 278	Harpanthaceae – 956, 957	257	333
Schistochilaceae – 279–284	Geocalyceaeae – 958, 959	257	333
Pseudoplegiopiceaceae – 285	Antheliaceae – 960	257-258	333
Mastigophoraceae – 292, 293	Acknowledgements	259	341
Herbertaceae – 294–305	Literature Cited	259	341-343
Lepidoziaceae – 306–363	Index to species	260-267	344-346

1– Botanical Garden-Institute, Far Eastern Branch of the Russian Academy of Sciences, Makovskogo Street, 142, Vladivostok, 690024, Russia E-mails: vabakalin@gmail.com, ksenia.g.klimova@mail.ru
2 – Institute of Ecology and Biological Resources, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 10000, Ha Noi, Vietnam E-mail: nvsinh@gmail.com
3 – AXiiO Oy Company, Hämeentie, 135 A, Helsinki XR CENTER 00560, Helsinki, Finland E-mail: daniil.bakalin@gmail.com
4 – Team of National Ecosystem Survey, National Institute of Ecology, Seocheon, South Korea. E-mail: hepaticae@jbnu.ac.kr
* – Author for correspondence
Liverwort oil bodies are intracellular organelles originating mostly from the dilation of endoplasmic reticulum cisternae (He et al., 2013), and they were first reported over 185 years ago. Hübener (1834) observed oil bodies in *Mylia taylorii*, and although he was likely the first researcher to focus on this large organelle, he did not recognize them as a special structure. In the next year, a study by Mirbel (1835) on *Marchantia* first described ellipsoidal white masses with warty exteriors in some cells that were clearly oil bodies, as they are now known. Therefore, oil bodies were first discovered and described nearly at the same time as chloroplasts (Mohl, 1835). In the same time period, Gottsche focused on large oil bodies in the cells of liverwort, which he assumed was closely related to *Jungermannia caespiticia* (=*Endogemma caespiticia*). The taxon (a heterotypic synonym of *E. caespiticia*) was published in 1844 (Gottsche et al., 1844) under the name *Jungermannia punctata* Gottsche (n. illeg., auct., non *J. punctata* Tayl.). Moreover, Gottsche wrote “Nucleo cellulari discum macularum ret- tis folii occupante” (l.c.: 92), which stressed the distinguishing aspect of the observed feature. He produced a pencil drawing of the oil bodies ('nuclei' in l.c.), and although that picture has been maintained at STR, it does not appear to have been published (Figure 1).

One year before the volume of Synopsis Hepaticarum was published (Gottsche et al., 1844), Gottsche (1843) published an exhaustive study on *Haplonitrium hookeri* and described the leaf cells of the species, and he referred to these oil bodies in several liverwort taxa as “Zel- lenkörper” ('cell bodies') (Pages 287–292 in l.c.). Slightly over 20 years after the first observation, in 1857, the oil bodies of 30 liverwort taxa were described by Holle (1857). In 1874, which was forty years after they were first mentioned, oil bodies ‘received’ their currently used name, i.e., ‘oil bodies’, which is ‘Ölkorper’ in the German language (Pfeffer, 1874). Stewart (1978) stressed that Wilhelm Pfeffer (plant physiologist by its main interest) was the first person who realized the taxonomic value of external characteristics of oil bodies for morphological systematic analysis. Although, the taxonomic value of oil body features was subsequently formally accepted, the first species that was differentiated based on oil body features, *Lophozia silvicola* H. Buch (Buch, 1929), was reported 55 years after the report by Pfeffer (1874). Ten years later, Müller (1939) published the first exhaustive account on oil body occurrence and morphology in 210 species of liverworts and hornworts. The account was very carefully prepared, and even where the specimens were studied for oil bodies after initial drying, any instances were always noted. Among a very few mistakes included *Monoselenium tenerum* and *Riccardia pinguis* (=*Aneura pinguis*), which were described as “Ohne Ölkorper” (l.c.: 349 and 351, respectively) and *Trichocolea pluma*, for which 10 oil bodies of very small size (3 μm) were identified.

The last eighty years (since Müller’s (1939) summary) were marked by a series of valuable works on liverwort oil bodies, including miscellaneous summaries in the introductory sections of certain papers. The relatively recent review by He et al. (2013) is an excellent account of the various aspects of liverwort oil body knowledge, and the authors analyze oil body studies with a focus on chemistry, ultrastructure organization, physiological functions, etc. Many papers have described the oil bodies’ external characteristics, such as the microscopic surface features, size, shape and number per cell. The goal of the present work is to provide a description of the external morphology of oil bodies, which was also the objective of the papers cited below.

Stewart (1978) provides several references for further studies on the morphology, taxonomy and anatomy (as much as possible with light microscopy) for oil bodies. All papers mentioned in his review and observed over the last 40 years fall into two groups: 1) focus on oil bodies as a self-sufficient research object or 2) treatment of oil bodies as a supplementary species characteristic for taxonomic monographs.

More publications belong to the second group. Moreover, providing data on oil body morphology became a popular focus of taxonomic revisions since the 1950s. Many monographs and manuals published from the mid-
dle of the 20th century (somewhat inconsistently at primary stages) include data on oil bodies. The most valuable books began with Müller (1951–1958) and Arnell (1956) and continued to Schuster (1966, 1969, 1974, 1980, 1992a, b), Paton (1999), Damsholt (2002), Schlijka\v{v}kov (1979, 1980, 1981, 1982), Inoue (1974, 1976), etc. Not mentioned here are the numerous papers describing oil bodies as part of monograph studies of certain taxonomic units. However, at least two are more prominent and should inevitably be cited. These are Amakawa’s treatment of Japanese Jungermanniaceae (Amakawa, 1959, 1960), Furuki’s revision of Aneuraceae in Japan (Furuki, 1991) and the revision of epiphyllous liverworts of China by Zhu & So (2001). Among conditionally ‘floristic’ works, the valuable book on West Greenland Hepaticae by Schuster and Damsholt (1974) should also be mentioned because of the thoroughness of the laboratory study of oil bodies that was performed immediately after collecting the material in severe natural conditions. The studies of Riccardia and Plectocolea by Mejer (1959a, b) are also noticeable because they provide valuable information on oil bodies in these genera in tropical taxa. The present account does not aspire to list all such works, which represents a task that has become more difficult to manage due to the increasing number of publications. However, the publication of such works presumes the importance of studies on oil bodies of liverworts, at least for floristic and taxonomic practices.

Of course, considerably fewer papers have been devoted directly to oil bodies, especially papers that focus on the features of oil bodies to support morphological descriptions of taxa. The following valuable papers were published since Müller (1939), and they were specifically devoted to determining the oil body morphology by light microscopy and providing oil body line drawings (or photographs): 1) the study on oil bodies in Japanese liverworts by Hattori (1951, 1953), 2) the study on oil bodies in Lejeuneaceae by Schuster and Hattori (1954) and Schuster (1992c), 3) the study on oil bodies in Malayian liverworts by Inoue (1967), 4) the study on oil bodies in Andean Aneuraceae by Meenks and De Jong (1985), 5) the doctoral dissertation on oil bodies in South Appalachian leafy liverworts by Hicks (1973), 6) the study on oil bodies in hepatics from Singapore by Juslen et al. (2001), 7) the study on oil bodies in African liverworts by Kis and Počs (1997), 8) the description of oil bodies in Chinese Lejeuneaceae by Zhu and Gradstein (2003), 9) the description of oil bodies in some liverworts from Sikkim by Singh et al. (2012), 10) the study on oil bodies in New Zealand liverworts by Stewart (1978), and 11) the account of oil bodies in liverworts collected in Pakistan (Furuki, 1993). The provided list is certainly not exhaustive and somewhat arbitrary, although it may provide insights on the state of knowledge in this field. We should also mention the Tremblay (2016) dissertation, which suggested the exceptional ‘ancestry’ oil cells scattered in simple thallose Paleozoic liverworts. He et al. (2013) mentioned that the most basal group of liverworts, including Haplomitriales and Treubiales, are units with principally different oil body characteristics (scattered in thallus oil cells, with one large oil body within Treubiales and numerous small and homogeneous oil bodies in Haplomitriales). Schuster (1992c) conceptualized the plesiomorphic nature of small numerous oil bodies (similar or smaller in size as chloroplasts), whereas the report by Tremblay (2016) showed the plesiomorphic nature of scattered oil cells. Thus, this noticeable contradiction requires further investigation.

The vast majority of works published in the 20th century depict oil bodies using a line art technique, although intravital grayscale photography of oil bodies was widely used as early as Amakawa (1959). In contrast, the first decades of the 21st century, which were marked by the widespread use of digital cameras, resulted in the ability to immediately observe the imagery and easily obtain many repeated images. In addition, methods of producing layer-by-layer photographs and machine stacking photographs were realized within the last ten years using various software programs.

Oil bodies are present in liverworts not only in leaves and stems but also in seta and spores, as illustrated by Müller (1939), Suire (1966), Phakaski (1972a, b), etc. However, the most widely used taxonomic and routine identification process focuses on the features of oil bodies distributed in leaf cells of leafy liverworts and the thalli of thallose liverworts. Our work is restricted to oil bodies observed in leaves of leafy liverworts and thalli of simple thallose liverworts. We do not provide photographs of oil cells in Marchantiopsida (with one exception for Monosolenium) and thus limit the sampling to Jungermanniopsida and Haplomitriopsida.

Within the last decade, we have conducted several field expeditions that collected many live materials, which were then studied in various laboratories. Approximately 15000 photographs (including layerwise series) were taken of the collected specimens. Most expeditions took place in Pacific Asia (in the boundaries outlined in the Materials and Methods); therefore, the second limitation of our work is the regional linkage over this large and diverse territory, although photomicrographs of oil bodies sampled from other areas are used in several cases.

To summarize, the main goal of the present work is to provide and systematize the information on oil bodies in leafy and simple thallose groups of liverworts sampled from Pacific Asia within the last decade and stored in the VBGI.

MATERIAL AND METHODS

Area

Pacific Asia is an unofficial name for the huge land area stretching from the northern extremes at the Arctic Ocean shore (including Herald and Wrangell Islands
within the Chukchi Sea), along the western fringe of Pacific Ocean (300–2000 km strip of land inward to the continental mainland) to the southern extremes of the Malayan Peninsula bordered by the Indian Ocean in the West and Pacific Ocean in the East. This land area covers at least three floristic regions within two floristic kingdoms: the Circumboreal and East Asian Regions in the Holarctic Kingdom and Indo-Asian Region in the Paleotropical Kingdom, which is based on Takhtajan (1979, 1986). Other authors (Chen et al., 2018; Wu & Wu, 1996) have treated the East Asian region as a self-dependent kingdom and subdivided it into two floristic subkingdoms (‘Rhododendron’ and ‘Metasequoia’). Naturally, the vegetation in this extraordinary latitudinal diapason experiences noticeable but gradual changes from the Arctic (Polar) deserts to typical tropical forests. Pacific Asia hosts one of the most durable pairings of mesophytic communities in the world. Woody vegetation varies from tundra dwarf shrubs and crooked forests of Pinus pumila (Pall.) Regel and Duschekia fruticosa (Rupr.) Pouzar in the north and from boreal (coniferous) and temperate (broadleaf deciduous) forests to evergreen forests in the subtropics and tropics, and an interrupted gradient of almost 70 latitudinal degrees is observed. Certainly, the changes in liverwort flora across this land area are also noticeable. The total species list in Pacific Asia includes species from the countries with the richest taxonomic diversity, such as China and Japan. Vietnam to the south is also one of the floristically richest countries in Asia and hosts close to 600 species. The Russian Far East hosts slightly over 400 species, although the flora is considerably different from that of Japan or China due to the presence of many Arctic-Montane and Arctic taxa, including those of the Beringian distribution. Therefore, the total list is an artificial mixture of various geographic flora elements, and the approximate number of liverwort species is close to 1400–1500, which is approximately 1/5 (or more) of the total liverwort diversity in the world (cf. Söderström et al., 2016).

Sampling and microscopy

The basic limitation for the number of included specimens was the amount of fresh material we were able to deliver to the laboratory, process and then photograph within the last 9 years (starting from the spring of 2012). The most frequently used camera was an Olympus UC30 camera installed on an Olympus CX31 microscope in the laboratory of cryptogamic biota at the Botanical Garden Institute (herbarium VBGI), and it represented the main but not the only source of oil body photographs. Many photographs were produced in other laboratories using cameras and microscopes provided to the herbarium curators: CBM, JNU, and HN. In total, over 15000 oil body photographs were obtained, including layerwise photographs. In the next step, we selected photographs to illustrate the oil bodies in as many taxa as possible from Pacific Asia. If variations in oil body characteristics among specimens were observed, then more than one photograph per species was included (up to 8 at the maximum). For comparison purposes, we included a limited number of photos of our dataset that included liverworts from other regions, such as Murmansk Province in northeastern Russia, Taymyr Peninsula in the Siberian Arctic and Java Island in Indonesia. In all cases, the included species occurred in Pacific Asia but were not studied alive in the area or other oil body characteristics were observed in the ‘alien’ region. We occasionally observed variations in the oil body characteristics in one species within the same region. In the vast majority of cases, we could not identify the initial reason for the observed discrepancies. Two likely possible reasons of observed discrepancies should be noted: 1) the differences were based on simple morphological variations, and 2) the differences indicated the presence of different taxa.

The specimen statistics are as follows:

1) The total number of published photographs is 1032, which corresponds to approximately 990 specimens (some specimens were photographed twice, e.g., in the lower and upper parts of the leaf or the outer and inner cells of simple thallose liverworts).

2) One-hundred twenty-five photographs were taken for specimens collected in China, 27 were taken for specimens from Indonesia, 68 were taken for specimens from Japan, 80 were taken for specimens from the Republic of Korea, 353 were taken for specimens from Russia and 379 were taken for specimens from Vietnam.

3) Five-hundred twelve photographs were taken for specimens collected by Bakalin, 29 were taken for specimens by Klimova, 451 were taken for specimens by Bakalin & Klimova, 10 were taken for specimens by Klimova & Bakalin, 2 were taken for specimens by Chernyagina (KAM), 8 were taken for specimens by Furuki (CBM), 6 were taken for specimens by Borovichev (KPABG) and 13 were taken for specimens by Fedosov (MW).

Specimen preparation

Although oil body characteristics have appeared in monographs and manuals for many years and their descriptions have been a vital part of traditional species diagnosis in recent papers, this feature is often not treated properly because oil bodies present unstable characteristics and commonly disappear soon after the first artificial drying; moreover, in warm temperatures, moist plants are commonly attacked by fungi whose toxins seem to accelerate the deterioration of oil bodies in specimens that are not dried properly. These features are certainly not the ‘fault’ of plants and do not provide an argument against using oil body features; rather, they indicate that photographs should be taken as soon as possible after sample collection. Therefore, time restriction is one of the main factors guiding our work. The following treatment may be recommended for gathered specimens. The collected material was stored in a refrigerator (not freezer) as soon as possible. However, in subarctic and Arctic
areas, especially when collected specimens are kept out of direct sunlight, they may survive in the field for 2 or 3 weeks in shady locations with daily mean temperatures below 10 °C. In the tropics, however, the specimens should be refrigerated within 3–4 days; otherwise, oil body deterioration will become prominent. Within the refrigerator, the specimens need to be kept at 1–5 °C. After the specimens are placed in the refrigerator, they may be studied within 3–4 weeks. The most delicate are the oil bodies of Aneuraceae (especially Riccardia and Calypogeiaceae, and these groups should be studied within the first week after collection. Genera such as Porella and Frullania may be refrigerated without visible oil body deterioration for 4–6 weeks if they are not attacked by mold fungus. To maintain live material with surviving oil bodies for longer periods, the material should be placed in the refrigerator immediately and processed for very gradual freezing passing 0°C over several days. The frozen specimens may then be refrigerated at a temperature of −20 °C or below (tested up to −90°C), and under such conditions, they may be kept for several years (a maximum of 5 years of direct observation occurs in our laboratory) if not longer. However, some groups lost oil bodies completely, regardless of whether they were frozen gradually or suddenly. The latter mostly applies to tropical Lejeuneaceae, which do not seem to be preadapted to temperatures below zero. Moreover, Riccardia (in all cases) and Calypogea (the vast majority of taxa, regardless of collection location, e.g., subarctic) lose their oil bodies at the first freezing. When the specimens are held in the refrigerator, oil body deterioration may occur very gradually and appears as the formation of increasingly coarse granules compared with the fresh specimens. However, in the vast majority of cases, no visible evidence of deterioration occurs, and the cells start to lose oil bodies suddenly until all cells are deprived of oil bodies.

Photograph preparation

Most of the photographs were taken with an ×40 objective, and although some were taken with an ×63 objective (the latter objective was not always available and sometimes introduced additional optical aberrations). However, due to the different characteristics of the mi-
higher than that in the midleaf. In the vast majority of cases, we photographed and measured the number of oil bodies per cell in the midleaf. In any other cases where oil bodies were photographed, e.g., in the leaf margin or leaf base, the location is indicated in the description. Moreover, the elements of the cell network, such as vitta and oblong cells or ocelli (Herbertus, Frullania, etc.), introduced additional issues. In all these cases, the origin of the data on the oil bodies (vitta, vitta adjacent cells, etc.) is indicated.

The oil body number is commonly provided as two numerals, thus showing the range that includes 90% of the data. The data provided in brackets show the numerical data observed in 10% of cases or rarer, which was noted as “rare” (concerning size, shape, number, etc.), thus indicating that the probability of occurrence is less than 10% in the original photograph (fragment of which is published).

A small oil body that is much smaller than the main oil body in the cell was called a satellite. This situation is quite common in Radula. Very small smooth-surfaced oil bodies like structure (less than 1.5 ȝm) are called small putative oil bodies. Some of them may have surrounding membrane and some do not have it. In the present study we could not estimate which variant is in hand and regarded them as the single category. These small putative oil bodies are present in some genera which commonly regarded them as the single category. These small putative oil bodies are present in some genera which commonly regarded as oil bodies free (Cephalozia, Nowellia, Metzgeria, etc.). Their presence in the cell is very unstable, in our estimation the southern specimens (tropical and subtropical in origin) have small putative oil bodies more commonly than in the same genera (and even the species) from northern latitudes.

2) Oil body surface structure. The variation of surface structure in oil bodies may be reproduced as the series of states when the smooth-surfaced oil bodies experienced increasingly fine structuring, as indicated below:

> smooth > segmented > botryoidal > granulate.

Moreover, this structuring is not a one-way oriented trend but rather a cyclic regularity since very finely granulate oil bodies are sometimes difficult to distinguish from smooth oil bodies. Since phylogenetic aspects are not included in the provided scheme, this structuring may be used for purely descriptive reasons only. Occasionally, we had to identify intermediate characteristics, e.g., “coarsely granulate” for oil bodies structured much more coarsely than typical granulate but not botryoidal (= grape cluster) or “finely granulate” for a surface that is grading to smooth but not yet smooth. The only additional surface type not included in the present scheme was the “crumpled paper ball” type, which is presented here in Plectocolea virgata and Nardia breidleri only. The listed main types of oil bodies surface are illustrated in Table 1.

A special case is the description of lipophilic globules, which are commonly referred to as ‘eyes’ within oil bodies in keys and morphological descriptions. Follow-
ing this tradition, we maintain the use of ‘eye’ in the description. In the vast majority of species, oil bodies have no distinct eye, although in some taxa, from one eye (e.g., Lophozia silvicola) to several eyes (e.g., 1–7 per oil body in Plectocolea radicellosa) are present. The ‘eyes’ may be situated on the surface of the oil body (the most common situation) or submerged into the oil body (rarely observed in Plectocolea).

3) Oil body shape. In addition to clearly spherical shapes, oil bodies possess a great variety of shapes that were variously named (sometimes voluntaristically) in the literature. Actually, it is quite rare to observe purely fusiform or ellipsoidal oil bodies. Thus, we treated all oil bodies for which the ‘length’ and ‘width’ could be determined as oblong. The real shape (which is in many cases indescribable irregularly oblong) may be easily revealed by the photographs. The only character of the shape we also recognized was biconcave, which may be simply the result of plasmolysis or a similar process. Ocelli are widely known phenomena in some groups of liverworts, including some Lejeuneaceae and Frullaniaceae, when one (rarely two, which are mostly adjacent) very large oil body is distributed in the cell and commonly fills the cell lumen; these cases are described separately. Ocelli are not differentiated from ‘oil cells’, although Amakawa (1960) distinguished oil cells in Plectocolea tetragona from oil cells of Marchantiales, because chloroplasts are observed in the former but supposedly absent in the latter. However, as shown by Galatis et al. (1978), Kronestedt (1983), Suire (2000) and He et al. (2013), ‘true’ ocelli also have chloroplasts, although they occupy less of the common cell.

4) Oil body color. In the vast majority of cases, the oil body color simply reflects the color of chloroplasts or cell walls or even surrounding matter. However, some genera are characterized by independent variation in this parameter, and some species may possess special and easily distinguished colors. Besides some species of Porella or Lejeunea, where oil bodies have a light bluish tinge (which varies based on subjective impressions), there are several genera where the color is prominently evident, such as in Calypogeia, the genus including the taxa with blue oil bodies (even grading to purple in C. aeruginosa). The phenomenon of blue color is due to the extensive accumulation of blue azulene derivatives (Suire et al., 2000). Species of Radula, Conoscyphus, some Plectocolea and several other genera are characterized by oil bodies of distinctly brown color.

Final precautions

1) Within one leaf, the cell size sometimes varies greatly, e.g., especially in Bazzania, to a lesser extent in Pliogochila. Therefore, although we tried to measure oil bodies and photograph the cells within the leaf middle, some variations from photograph to photograph occurred; thus, the cell size (especially in various specimens) could vary greatly.

2) The oil body surface characteristics (rarely oil body size) may change depending on the storage conditions. Some fragmentation (looking as coarsely granulate oil body surface) may occur in some taxa; therefore, ‘old’ specimens may show different features compared with very fresh specimens. Such photographs were excluded from consideration where possible, although in some cases when the deterioration was not obvious, such photographs might be used in the study unintentionally.

3) The oil body eye is a structure highly sensitive to storage conditions and the time between collection and microscopy examination. These structures can easily disappear with time or appear unexpectedly (which represents a morphologically analogous but not homologous structure). For obvious cases, we eliminated such photographs, although some cases were not obvious. Moreover, in several species, oil bodies have not yet been described; therefore, we could not decide whether the ‘eye’ present in the oil body is typical for the taxon or occurred because of a deterioration aberration. When series of such cases were observed, we certainly included such information in the descriptions and provided the photographs. In several other cases when the reasons were not so obvious.

4) Sometimes plants from geographically remote areas are identical (or nearly so) in all essential morphological features but their oil body characteristics will differ. This discrepancy might be the result of simple morphological variations in oil bodies or reflect genetic differences between populations. Since we were not able to check the genetic identity for all such cases, we tried to include corresponding information with the photographs of all morphological ‘races’ and indicated that further study on the taxonomic identity of collected specimens is actually required.

5) When we photographed oil bodies, we did not plan to produce clear photographs of cell wall features (e.g., trinions, intermediate thickenings, or middle lamina between cells). Moreover, due to the different focuses, it was commonly impossible to obtain clear photographs of cell walls and oil bodies in the same photograph. Therefore, in many cases, the series of oil body photographs not be used to reveal or describe cell wall features.

6) All scale bars in the catalogue are 30 µm. We used three scales in the photographs (namely, ‘small’, ‘middle-sized’ and ‘big’) cells), trying to maintain the same scale within one genus and focus on the dominant cell size in the genus, even if the cell size varied greatly from taxon to taxon. Such variations are especially obvious in Coleolejeunea, where the cell width sometimes differed by three or more times; however, all Coleolejeunea taxa were regarded as taxa with ‘small cells’, thus ensuring that the photographs were visually comparable. Similar problems occurred in Marsupella, Gymnomitrion, etc. In addition, one exclusion was noticeable: the vast majority of Porella were characterized by cells more than
25 μm wide; therefore, the genus should fall to the ‘middle-sized’ category. However, since oil bodies in *Porella* are distinctly small and numerous, to provide adequate pictures, the genus was included in the group of taxa with ‘small’ cells.

7) The range of oil body variations is poorly understood in many species. In some cases, the oil body features may slightly vary and be species-specific, whereas in other, the variation within the species may coincide with the variation within the section (which we attempted to illustrate when sufficient photos were available). For instance, the oil body variation in *Scapania parvifolia* is quite significant and generally similar with the variation in *S. mucronata*. However, the oil bodies variation in *Scapania parviflora* (morphologically and genetically belonging to the same section) are different from those in *S. parvifolia* and *S. mucronata* and seem to be only slightly variable.

8) Oil body photographs were taken from the midleaf if otherwise not indicated. In the case of strongly bilobed (sometimes near the base) or conduplicate leaves (*Scapania, Lejeunea*, etc.), the cells were photographed in the middle part of the largest lobe.

9) The generic treatments in the list mostly follow Söderström et al. (2016), with the following exceptions: 1) the narrow genus concept was applied in Solenostomataceae, 2) *Pseudolophozia* was recognized as distinct from *Barbilophozia* and *Leucolejeunea* is treated separately from *Cheilolejeunea*. Despite arguments provided by Ye & Zhu (2010) and Ye et al. (2015) we guess this complex may require further splitting into several genera. Species are arranged alphabetically within genera, genera are arranged alphabetically within families, and families are generally arranged following the system proposed by Crandall-Stotler et al. (2009).

10) the photographs in high resolution (1600x1600 dpi) are available online via the permanent link http://oil-bodies.hepaticae.ru/

DISCUSSION

Oil bodies vary in the number per cell, size, surface characteristics, and even color. In the vast majority of liverwort genera, oil bodies are colorless or have a very faint tinge (grayish, brownish, bluish). On the other hand, there are a number of genera characterized by a wide distribution of colored oil bodies. The most common are brown colored oil bodies (*Riccardia, Plectocolea, Radula*, etc.). Oil bodies of the genus *Calypogeia* occupy a special place in terms of the variety of colors. In this genus, along with colorless and brownish oil bodies, there are completely unusual color options. Oil bodies may be pale to dark blue and brown-blue, and even purple (*Calypogeia aeruginosa*). By the surface characteristics, the most common are granulate oil bodies. The remaining groups are less common. Although within the genera *Calypogeia* and, in part, *Plagiochila*, botryoidal oil bodies are widespread. *Cephalozia* and *Porella* are dominating by smooth oil bodies. The greatest variety of surfaces is found in the genera *Plectocolea* (all common types, except for completely smooth-surfaced), *Nardia, Plagiochila* (except for smooth-surfaced). On the contrary, the oil body surface stability occurs in such large genera as *Frullania, Lophozia, Scapania* (everywhere only granulate, with minor modifications). A number of genera either do not have oil bodies, or have small putative oil bodies, these are *Cephalozia, Metzgeria, Novelia, Pseudolepicolea*, etc. By the number of oil bodies (excluding small putative oil bodies), most genera have 10 to 30 oil bodies per cell. The largest numbers are known within the ancient *Haplotrichum*, as well as in more “advanced” genera, such as *Lejeunea, Obtusifoliwm, Schistochilopsis, Porella*. One oil body is known in many genera. The genus *Radula* is characterized by the greatest constancy in this feature; the vast majority of species in the genus has one oil body per each leaf cell. A special case are isolated “oil cells”, with 1-2 large oil bodies per some cells in the leaf (or thallus), while the neighboring cells do not have oil bodies at all. Such oil cells are widespread in complex thalllose liverworts (only *Monosolenium* is illustrated), and among other groups (of those presented here) are known in *Plectocolea* and *Apotreubia*. These large oil bodies occurring in “oil cells” somewhat resemble ocelli, present in several genera (*Frullania, Eremonotus*, several genera in *Lejeuneaceae*). However, ocelli surrounded cells commonly have smaller and more or less numerous oil bodies. In other words the variation of oil bodies across liverworts is comparable with the variation characteristics of some morphological features, e.g. trigones in the leaf cell: some genera have entirely small-sized or large-sized trigones, while some genera are characterized by the great variation in this parameter. As in the provided example, the oil body features are commonly ‘working’ at the species level identification, but rarely so on the genus level and even more rarely on the level of the family.
Liverwort oil body diversity in Pacific Asia

OIL BODIES DESCRIPTION (all scales 30 μm)

Treubiaceae

Fig. 2: Oil bodies in specified cells, 28–40×40–55 μm, finely granulate, brown – RUSSIA, Khabarovsk Territory, Bakalin, kh-27-1-16.

Haplomitriaceae

Fig. 3: Oil bodies 20–30(–35) per cell, spherical, 2–4 μm in diameter, oblong 3–5×2–3 μm, unclearly segmented – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-70-19-15.

Haplomitrium mnioides (Lindb.) R.M.Schust.
Fig. 4: Oil bodies 50–70 per cell, spherical, 1.5–2 μm in diameter, oblong 3–5×1.5–3 μm, smooth to segmented – JAPAN, KOCHI PREFECTURE, Bakalin, j-10-25-15.

Haplomitrium mnioides (Lindb.) R.M.Schust.
Fig. 5: Oil bodies 18–35 per cell, rarely spherical, 2 μm in diameter, commonly oblong 3–8(–10)×1.5–2.5(–3) μm, finely granulate, some biconcave – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-22-4-20.

Monosoleniaceae

Monosolenium tenerum Griff.
Fig. 6: Oil bodies 1 per specialized cell, spherical 45 μm in diameter, segmented, brown – CHINA, GUIZHOU PROVINCE, Bakalin, china-53-25-13_2.

Monosolenium tenerum Griff.
Fig. 7: Oil bodies 1 per specialized cell, oblong, 57×50 μm, segmented, brown – CHINA, GUIZHOU PROVINCE, Bakalin, china-53-25-13_3.

Pelliaceae

Pellia endiviifolia (Dicks.) Dumort.
Fig. 8: Oil bodies (8–)10–15(–20) per cell, spherical, 4-5 μm in diameter, oblong 5–6×4–5 μm, coarsely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-72-2-15.

Pellia endiviifolia (Dicks.) Dumort.
Fig. 9: Oil bodies 10–20 per cell, spherical, 4–6 μm in diameter, oblong 5–8×4–5 μm, finely granulate, sometimes biconcave – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-10-30-17.

Pellia neesiana (Gottsche) Limpr.
Fig. 10: Oil bodies 10–20 per cell, spherical, 4–5 μm in diameter, oblong 5–7×4–5 μm, granulate – JAPAN, TOTTORI PREFECTURE, Bakalin, j-1-37-13.
Pellia neesiana (Gottsche) Limpr.

Fig. 11: Oil bodies 10–20 per cell, spherical, 3–4 μm in diameter, oblong 4–5(–6)×3–4 μm, finely granulate, sometimes biconcave – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-21-33-14.

Calyculariaceae

Calycularia crispula Mitt.

Fig. 12: Oil bodies 26–57 per cell, spherical, 1.5–3 μm in diameter to oblong 1.5–2×2–3 μm, granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-75-10-18.

Calycularia laxa Lindb. et Arnell

Fig. 13: Oil bodies 20–36 per cell, spherical, 2–3 μm in diameter, oblong 2–3×1.5–2.5 μm, granulate, but looks as botryoidal since the oil body is composed by only a few granules – REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-29-29-15.

Fig. 14: Oil bodies 30–48 per cell, spherical, 3–4 μm in diameter, granulate, but looks as botryoidal since the oil body is composed by only a few granules – REPUBLIC OF KOREA, JUOLLABUK-DO, Bakalin, kor-71-3-19.

Makinoaceae

Makinoa crispata (Steph.) Miyake

Fig. 15: Oil bodies 7–15 per cell, spherical, (3–)4–7 μm in diameter, oblong 5–7×4–5(7) μm, granulate – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-24-4-19.

Fig. 16: Oil bodies 5–12(18) per cell, spherical, 4–6 μm in diameter, oblong 4–8×4–6 μm, granulate – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-24-4-19.

Fossombroniaceae

Fossombronia alaskana Steere et Inoue

Fig. 17: Oil bodies 16–29 per cell, spherical 2–4 μm in diameter, oblong 3–5×1.5–3 μm, loosely segmented – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-30-9-14.

Fig. 18: Oil bodies 8–20 per cell, spherical, 2–5 μm in diameter, oblong 3–5×2–4 μm, smooth – RUSSIA, PRIMORSKY TERRITORY, Klimova, prim-98-3-19.

Fossombronia japonica Schiffn.

Fig. 19: Oil bodies 25–45 per cell, spherical, 3–5 μm in diameter, granulate – INDONESIA, JAVA ISLAND, Bakalin, java-2-7-15.
Liverwort oil body diversity in Pacific Asia

Fossombronia japonica Schiffn.
Fig. 20: Oil bodies 13–23 per cell, spherical, 3–5 μm in diameter, oblong 4–6×3–4(−5) μm, finely granulate, some biconcave – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-18-8-20.

Moerckiaceae

Hattorianthus erimonus (Steph.) R.M.Schust. et Inoue
Fig. 21: Oil bodies 30–50 per cell, spherical, 1.5–3 μm in diameter, oblong 3–4×1.5–2.5 μm, segmented to botryoidal – RUSSIA, PRIMORSKY TERRITORY, Klimova & Bakalin, prim-19-9-16.

Moerckia blyttii (Murch) Brockm.
Fig. 22: Oil bodies 8–15 per cell, spherical, 4–6 μm in diameter, oblong 4–7×4–6 μm, botryoidal to roughly segmented – RUSSIA, SAKHALIN PROVINCE, Borovichev, be-236-15.

Moerckia flotoviana (Nees) Schiffn.
Fig. 23: Oil bodies 6–20 per cell, spherical, 3–6 μm in diameter, oblong 4–8×3–5 μm, smooth to segmented, biconcave – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-58-13-15.

Moerckia levieri Schiffn.
Fig. 24: Oil bodies 15–30 per cell, spherical, 2–4 μm in diameter, oblong 3–5×2–3 μm, granulate, sometimes biconcave – RUSSIA, KAMCHATKA TERRITORY, Klimova, kam-33-39-16.

Pallaviciniaceae

Pallavicinia ambiguа (Mitt.) Steph.
Fig. 25: Oil bodies 7–15 per cell, spherical, 3–4(−5) μm in diameter, oblong 5–16×3–4 μm, granulate – CHINA, GUIZHOU PROVINCE, Bakalin, china-55-44-13.

Pallavicinia levieri Schiffn.
Fig. 26: Oil bodies (15–)20–30 per cell, spherical, (3–)4–5 μm in diameter, oblong 6–12(−16)×4–5 μm, granulate – JAPAN, KOCHI PREFECTURE, Bakalin, j-4-2-15.

Pallavicinia levieri Schiffn.
Fig. 27: Oil bodies (5–)10–25 per cell, spherical, 2.5–3 μm in diameter, oblong 3–8×2–3 μm, coarsely granulate – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-32-3-20.

Pallavicinia levieri Schiffn.
Fig. 28: Oil bodies 7–15 per cell, spherical, oblong 5–10×3–4(−5) μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-3-60-17.
Pallavicinia lyellii (Hook.) Gray
Fig. 29: Oil bodies 10–20 per cell, oblong 4–12×2–3(–4) μm, botryoidal – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-19-21-19.

Pleuroziaceae

Pleurozia acinosa (Mitt.) Trevis.
Fig. 30: Oil bodies 9–14 per cell, spherical, 3–5 μm in diameter, rarely oblong 5–7(–8)×4–5 μm, granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-28-27-20_7.

Pleurozia gigantea (F. Weber) Lindb.
Fig. 31: Oil bodies in the lower part of the leaf 18–25 per cell, spherical, 3–5 μm in diameter, coarsely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-13-6-19_6.

Pleurozia subinflata (Austin) Austin
Fig. 32: Oil bodies 6–15 per cell, spherical, 3–5 μm in diameter, coarsely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-13-6-19_9.

Pleurozia subinflata (Austin) Austin
Fig. 33: Oil bodies in lower part of the leaf 10–30 per cell, spherical, 3–4(–5) μm in diameter, coarsely granulate to botryoidal – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-14-10-20_2.

Fig. 34: Oil bodies 7–15 per cell, spherical, 3–4 μm in diameter, coarsely granulate to botryoidal – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-14-10-20_4.

Fig. 35: Oil bodies 6–15 per cell, spherical, 2–4 μm in diameter, coarsely granulate to botryoidal – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-31-27-20_2.

Fig. 36: Oil bodies in lower part of the leaf 11–22 per cell, spherical, 3–5 μm in diameter, coarsely granulate to botryoidal – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-31-27-20_4.

Metzgeriaceae

Metzgeria lindbergii Schiffn.
Fig. 37: Small putative oil bodies 20–30 per cell, spherical, 1–1.5 μm in diameter, smooth – CHINA, YUNNAN PROVINCE, Bakalin, c-88-74-18_7.
Liverwort oil body diversity in Pacific Asia

Metzgeria lindbergii Schiffn.
Fig. 38: Small putative oil bodies 20–40 per cell, spherical, 0.5–1.5 μm in diameter, smooth – CHINA, YUNNAN PROVINCE, Bakalin, c-88-74-18_9.
Metzgeria temperata Kuwah.
Fig. 39: Small putative oil bodies >40 per cell, spherical, 0.5 μm in diameter, smooth – REPUBLIC OF KOREA, GANGWON-DO, Bakalin, kor-66-7-19.

Aneuraceae
Aneura maxima (Schiffn.) Steph.
Fig. 40: Oil bodies in epidermal cells 15–25 per cell, spherical 2–5 μm in diameter, granulate – REPUBLIC OF KOREA, GEONGSANGNAM-DO, Bakalin, kor-44-1-14.
Aneura pinguis (L.) Dumort.
Fig. 41: Oil bodies in epidermal cells 15–25 per cell, spherical, 2–4 μm in diameter, granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-8-10-18.
Fig. 42: Oil bodies in epidermal cells 15–32 per cell, spherical, 3–4 μm in diameter, oblong 4–5×3–4 μm, botryoidal – REPUBLIC OF KOREA, GEONGSANGNAM-DO, Bakalin, kor-69-1-19.

Comment: Aneura pinguis s.l. includes cryptic species (cf. Myszczynska et al., 2017), therefore, it is highly likely that our photographs from Korea and Vietnam belong to still undescribed taxa.

Lobatiriccardia coronopus (De Not.) Furuki
Fig. 43: Oil bodies in epidermal cells 3–6 per cell, spherical, 10–13 μm in diameter, oblong 10–18×7–12 μm, granulate, brownish – INDONESIA, JAVA ISLAND, Bakalin, java-3-75-15.
Lobatiriccardia yunnanensis Furuki et D.G.Long
Fig. 44: Oil bodies in epidermal cells 3–4 per cell, oblong 8–15×6–9 μm, 7–9 per inner cell, 14–18×6–8 μm, granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-3-91-17.

Riccardia chamedryfolia (With.) Grolle
Fig. 45: Oil bodies in epidermal cells 1 per cell, spherical, 10–14 μm in diameter, granulate, brownish – RUSSIA, SAKHALIN PROVINCE, Borovichev, Be-235-15.
Fig. 46: Oil bodies in inner cells 1–2 per cell, spherical, 10–16 μm in diameter, oblong 14–20×13–16 μm, granulate, brownish – RUSSIA, SAKHALIN PROVINCE, Borovichev, Be-235-15_3.
Riccardia chamedryfolia (With.) Grolle

Fig. 47: Oil bodies in epidermal cells 1 per cell, spherical, 10–12 μm in diameter, granulate, brownish, rarely with central eye – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-58-2-15_6.

Fig. 48: Oil bodies in inner cells 1–2 per cell, oblong 15–25×8–12 μm, granulate, brownish – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-48-28-16_3.

Fig. 49: Oil bodies in epidermal cells 1–2 per cell, oblong 10–22×7–10 μm, granulate, brownish – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-48-28-16_6.

Riccardia flavovirens Furuki

Fig. 50: Oil bodies in inner cells 1(–2) per cell, spherical, 15–25 μm in diameter, oblong 18–30×15–22 μm, granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin, v-1-15-16_2.

Fig. 51: Oil bodies in epidermal cells 1–3 per cell, spherical, (8–)12–15 μm in diameter, oblong 13–25×10–15 μm, coarsely granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin, v-1-15-16_5.

Riccardia glauca Furuki

Fig. 52: Oil bodies in inner cells 1 per cell, oblong 22–50×8–20 μm, granulate, brownish, some C-shaped – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-1-45-17.

Fig. 53: Oil bodies in inner cells 1 per cell, oblong 20–35×10–22 μm, granulate, brownish, rarely C-shaped – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-1-45-17_3.

Riccardia graeffei (Steph.) Hewson

Fig. 54: Oil bodies in inner cells (2–)4–10 per cell, spherical, (3–)5–12 μm in diameter, oblong 7–20(–35)×5–10 μm, granulate, brownish – CHINA, GUIZHOU PROVINCE, Bakalin, china-55-49-13_3.

Fig. 55: Oil bodies in epidermal cells 1–3 per cell, spherical, 6–10 μm in diameter, oblong 7–17×5–8 μm, granulate, brownish – CHINA, GUIZHOU PROVINCE, Bakalin, china-55-49-13_5.
Liverwort oil body diversity in Pacific Asia

Riccardia latifronoides Schiffn.

Fig. 56: Oil bodies in inner cells 2–3 per cell, spherical, 10–13 μm in diameter, oblong 12–16×9–12 μm, granulate, brownish – VIETNAM, LÃO CÁI PROVINCE, Bakalin & Klimova, v-3-37-17_5.

Fig. 57: Oil bodies in epidermal cells (0–)1 per cell, oblong 8–12×6–8 μm, granulate, brownish – VIETNAM, LÃO CÁI PROVINCE, Bakalin & Klimova, v-3-37-17_6.

Riccardia multifida subsp. *decrescens* (Steph.) Furuki

Fig. 58: Oil bodies in epidermal cells 1(–2) per cell, spherical, 9–12 μm in diameter, oblong 12–27×10–16 μm, granulate to coarsely so – VIETNAM, LÃO CÁI PROVINCE, Bakalin & Klimova, v-5-60-17.

Fig. 59: Oil bodies in inner cells 1–2 per cell, spherical, 8–12 μm in diameter, oblong 12–18×8–10(–12) μm, granulate – VIETNAM, LÃO CÁI PROVINCE, Bakalin & Klimova, v-5-60-17_2.

Riccardia nagasakiensis (Steph.) S.Hatt.

Fig. 60: Oil bodies in inner cells 1–2 per cell, spherical, 12–18 μm in diameter, oblong 16–24×10–15 μm, granulate – VIETNAM, LÃO CÁI PROVINCE, Bakalin & Klimova, v-11-29-17.

Riccardia palmata (Hedw.) Carruth.

Fig. 61: Oil bodies in inner cells 1–2 per cell, oblong 13–25×7–12 μm, granulate, brownish — CHINA, GUIZHOU PROVINCE, Bakalin, china-56-23-13.

Fig. 62: Oil bodies in epidermal cells 1 per cell, oblong 8–13×6–10 μm, granulate, brownish – CHINA, GUIZHOU PROVINCE, Bakalin, china-56-23-13_2.

Riccardia parvula Schiffn.

Fig. 63: Oil bodies in inner cells 1 per cell, spherical, 15–20 μm in diameter, oblong 18–30×15–20 μm, granulate – VIETNAM, LÃO CÁI PROVINCE, Bakalin & Klimova, v-1-48-17_2.

Fig. 64: Oil bodies in epidermal cells 0–1 per cell, spherical, 15–18 μm in diameter, oblong 18–22×13–16 μm, granulate, brownish – VIETNAM, LÃO CÁI PROVINCE, Bakalin & Klimova, v-1-48-17_3.
Riccardia pusilla Grolle
Fig. 65: Oil bodies in inner cells 1 per cell, spherical, 17–20 μm in diameter, oblong 18–25×15–20 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-10-7-17.

Riccardia tamariscina (Steph.) Schiffn.
Fig. 66: Oil bodies in inner cells 0–1 per cell, spherical, 12–14 μm in diameter, oblong 15–18×10–12 μm, coarsely granulate to botryoidal – JAPAN, TOTTORI PREFECTURE, Bakalin, j-1-40-13.

Fig. 67: Oil bodies in inner cells 0–1 per cell, oblong 12–22×10–15 μm, coarsely granulate to botryoidal – JAPAN, TOTTORI PREFECTURE, Bakalin, j-1-40-13_2.

Porellaceae
Porella acutifolia (Lehm. et Lindenb.) Trevis.
Fig. 68: Oil bodies 20–40 per cell, rarely spherical, 2–4 μm in diameter, oblong 3–8×2–3 μm, smooth – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-28-35-20.

Fig. 69: Oil bodies (15–)20–45 per cell, spherical, 2–3 μm in diameter, oblong 3–5×2–3 μm, smooth, biconcave – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-29-10-19.

Porella caespitana (Steph.) S.Hatt.
Fig. 70: Oil bodies (15–)20–30 per cell, spherical, 1.5–2.5 μm in diameter, oblong 2–4×1.5–2.0 μm, smooth – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-34-7-14.

Porella caespitana var. nipponica S.Hatt.
Fig. 71: Oil bodies (13–)15–35 per cell, spherical, 2–3 μm in diameter, oblong 3–4(–5)×2–3 μm, smooth – CHINA, GUIZHOU PROVINCE, Bakalin, china-51-19-13.

Porella campylophylla (Lehm. et Lindenb.) Trevis.
Fig. 72: Oil bodies (12–)15–20 per cell, oblong 3–(6–8)×2–3(–4) μm, smooth, biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-88-6-18.

Fig. 73: Oil bodies 13–30 per cell, oblong 3–8×2–3(–4) μm, smooth, some biconcave – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-12-1-20.
Porella densifolia (Steph.) S.Hatt.

Fig. 74: Oil bodies 17–23 per cell, spherical, 3–5 μm in diameter, oblong 4–6×3–5 μm, nearly smooth – REPUBLIC OF KOREA, GANGWON-DO, Bakalin, kor-63-7-19.

Fig. 75: Oil bodies 30–45(–50) per cell, spherical, 2–3 μm in diameter, oblong 3–5×2–3 μm, smooth, biconcave – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-32-32-19.

Porella faurieri (Steph.) S.Hatt.
Fig. 76: Oil bodies (8–)10–20 per cell, spherical, 1.5–2.0 μm in diameter, oblong 3–5×2–3 μm, smooth, biconcave – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-36-12-15.

Porella gracillima Mitt.
Fig. 77: Oil bodies 5–10 per cell, spherical, 1.5–2.5 μm in diameter, oblong 2–3(–4)×1.5–2.5 μm, smooth – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-35-17-15.

Porella grandifolia (Steph.) S.Hatt.
Fig. 78: Oil bodies 30–45 per cell, spherical, 2–3 μm in diameter, oblong 3–4(–5)×2–3 μm, smooth, biconcave – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-32-30-19.

Porella japonica (Sande Lac.) Mitt.
Fig. 79: Oil bodies 7–16(–20) per cell, spherical, (2–)3–4 μm in diameter, oblong 3–5(–6)×3–4(–5) μm, smooth – JAPAN, KOCHI PREFECTURE, Bakalin, j-7-4-13.

Fig. 80: Oil bodies (10–)15–22(–30) per cell, spherical, (2–)3–4 μm in diameter, oblong 3–6(–8)×(2–)3–4 μm, smooth, biconcave – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-28-3-19.

Fig. 81: Oil bodies 14–25 per cell, spherical, 2–3 μm in diameter, oblong 4–6(–9)×3–4(–5) μm, smooth, biconcave – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-32-26-19.

Porella nitens (Steph.) S.Hatt.
Fig. 82: Oil bodies 20–30 per cell, spherical, 3–4 μm in diameter, oblong 4–6×3–4(–5) μm, smooth – VIETNAM, HAN GIANG PROVINCE, Bakalin & Klimova, v-1-2-20.
Porella oblongifolia S.Hatt.

Fig. 83: Oil bodies (10–)15–20(–25) per cell, spherical, 4–5(–6) μm in diameter, oblong 4–7(–9)×3–5 μm, smooth, biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-82-18-18.

Fig. 84: Oil bodies 22–30 per cell, spherical, (2–)3–4 μm in diameter, oblong 5–7×3–4 μm, nearly smooth – REPUBLIC OF KOREA, GANGWON-DO, Bakalin, kor-67-2-19.

Porella obtusata var. macroloba (Steph.) S.Hatt. et M.X.Zhang

Fig. 85: Oil bodies 20–50 per cell, spherical, 1.5–2.0 μm in diameter, oblong 2–3(–4)×1.0–1.5 μm, smooth – RUSSIA, AMUR PROVINCE, Bakalin, am-63-5-18.

Porella perrottetiana (Mont.) Trevis.

Fig. 86: Oil bodies 20–40 per cell, spherical, 2–4 μm in diameter, oblong 3–7(–8)×2–4(–5) μm, smooth – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-32-33-19.

Porella platyphylla (L.) Pfeiff.

Fig. 87: Oil bodies 20–35 per cell, spherical, 1–2 μm in diameter, oblong 2–3(–4)×1.0–1.5 μm, smooth – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-42-21-15.

Porella plumosa (Mitt.) Parihar

Fig. 88: Oil bodies 11–22(–25) per cell, spherical, 2–3(–4) μm in diameter, oblong 3–6(–8)×2–3(–4) μm, smooth – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-14-10-19.

Porella reflexigastria Pycs

Fig. 89: Oil bodies 12–30 per cell, spherical, 3–5 μm in diameter, oblong 4–6(–8)×3–4(–5) μm, smooth, biconcave – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-28-28-19.

Porella vernicosa Lindb.

Fig. 90: Oil bodies (8–)10–30 per cell, spherical, (2–)3–4(–5) μm in diameter, oblong 4–5(–6)×(2–)3–4 μm, smooth, biconcave – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-50-3-19.

Radulaceae

Radula acuminata Steph.

Fig. 91: Oil bodies 1–2(–4) per cell, including 1–3 satellites, spherical, 6–8 μm in diameter, oblong (8–)10–25×(5–)7–15 μm, coarsely granulate, brownish – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-25-9b-19.
Liverwort oil body diversity in Pacific Asia

Radula acuminata Steph.
Fig. 92: Oil bodies 1–2 per cell, with one smaller satellite, spherical, 7–9 μm in diameter, oblong 10–21×(7–)9–15 μm, coarsely granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-2-6-17.

Radula apiculata Sande Lac. ex Steph.
Fig. 93: Oil bodies 2–3 per cell, rarely spherical, 5–6 μm in diameter, commonly oblong 7–17×5–8 μm, finely granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-3-62-17.

Radula auriculata Steph.
Fig. 94: Oil bodies 1 per cell, oblong 10–18×(6–)8–14 μm, coarsely granulate, brownish – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-88-31-15.

Radula caduca K.Yamada
Fig. 95: Oil bodies 1(–2) per cell, spherical, 5–13 μm in diameter, oblong 7–17×(4–)5–13 μm, the second oil body, if present, is a small satellite, granulate, brownish – CHINA, YUNNAN PROVINCE, Bakalin, c-88-28-18.

Radula cavifolia Hampe ex Gottsche
Fig. 96: Oil bodies 1 per cell, oblong 8–15×5–9 μm, finely granulate – CHINA, GUANGXI PROVINCE, Bakalin, china 55-2-13.

Radula complanata (L.) Dumort.
Fig. 97: Oil bodies 1(–2) per cell, oblong 17–20×7–11 μm, the second oil body, if present, is a small satellite, finely granulate, brownish – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-55-6-19.

Radula constricta Steph.
Fig. 98: Oil bodies 1–2 per cell, oblong 11–25×(4–)10–16 μm, the second oil body, if present, is a small satellite, finely granulate, brownish – JAPAN, TOTTORI PREFECTURE, Bakalin, j-3-3-13.

Radula complanata (L.) Dumort.
Fig. 99: Oil bodies 2–4 per cell, spherical, 5–10(–14) μm in diameter, oblong 10–18×5–10 μm, granulate, brownish – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-29-2-17.

Radula formosa (C.F.W.Meissn. ex Spreng.) Nees
Fig. 100: Oil bodies 1 per cell, oblong 5–22×(8–)10–12 μm, granulate, brownish – INDONESIA, JAVA ISLAND, Bakalin, java-3-8-15.
Fig. 101: Oil bodies 1 per cell, oblong 15–25×8–13 μm, granulate, with central eye – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-28-34a-19.

Fig. 102: Oil bodies 1 per cell, oblong 15–20×6–13 μm, finely granulate, with central eye – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-28-35-19.

Radula fulvifolia (Hook. f. et Taylor) Gottsche, Lindenb. et Nees

Fig. 103: Oil bodies 1(–2) per cell, oblong 12–22×8–13 μm, granulate, brownish, with 0–several eyes, sometimes additionally with 1(–2) small, 3–4 μm in diameter smooth-surfaced satellites – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-21-14-19.

Fig. 104: Oil bodies 1 per cell, oblong 12–20×8–15 μm, granulate, brownish, sometimes additionally with 1–2 satellites, 5–7×3–4 μm, finely granulate – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-21-30-19.

Radula inouei K. Yamada

Fig. 105: Oil bodies 1 per cell, oblong 9–19×7–10 μm, granulate, some with unclear eye – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-13-21a-20.

Fig. 106: Oil bodies in leaf lobule 1 per cell, spherical, 4–7 μm in diameter, oblong (3–)5–7(–9)×2–3–4(–7) μm, granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-14-15-18_4.

Fig. 107: Oil bodies 1 per cell, spherical, 8–12 μm in diameter, oblong 12–16(–18)×8–10 μm, granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-14-15-18_5.

Radula japonica Gottsche

Fig. 108: Oil bodies 1 per cell, spherical, 7–11 μm in diameter, oblong 10–16×8–10(–12) μm, granulate to coarsely so, brownish – JAPAN, TOTTORI PREFECTURE, Bakalin, j-2-6-13.

Radula javanica Gottsche

Fig. 109: Oil bodies 1 per cell, spherical, 8–13 μm in diameter, oblong 10–17×9–13 μm, plus 1(–2) satellite, spherical 4–5 μm ion diameter to oblong, 5–7×4–5 μm, granulate, brownish – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-13-16-20.
Radula kojana Steph.

Fig. 110: Oil bodies 2–3(–4) per cell, spherical, 6–10 μm in diameter, oblong 8–14(–16)×6–9 μm, finely granulate, with central eye – JAPAN, TOTTORI PREFECTURE, Bakalin, j-7-26-13.

Fig. 111: Oil bodies 3(–4) per cell, oblong 7–18×5–8 μm, granulate, brownish, with central eye – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-14-17-19.

Radula madagascariensis Gottsche

Fig. 112: Oil bodies 1 per cell, spherical, 10–13 μm in diameter, oblong 12–20×10–13 μm, granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin, v-1-55-16.

Radula obtusiloba Steph.

Fig. 113: Oil bodies 1 per cell, spherical, 7–8 μm in diameter, oblong 7–16×6–10 μm, distinctly smaller to the leaf margin, coarsely granulate, brownish – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-31-40-14.

Radula oyamensis Steph.

Fig. 114: Oil bodies 1 per cell, oblong 13–23×10–15 μm, coarsely granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-23-27-20.

Radula perrottetii Gottsche

Fig. 115: Oil bodies 1 per cell, oblong 12–22×10–18 μm, coarsely granulate – JAPAN, KOCHI PREFECTURE, Bakalin, j-6-17-15.

Radula prolifera Arnell

Fig. 116: Oil bodies 1(–2) per cell, oblong 12–20×8–12 μm, finely granulate, brownish – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-23-4-16.

Fig. 117: Oil bodies 1(–3) per cell, including 1–2 rarely occurring satellites, (satellites only, 5–6 μm in diameter), oblong (7–)10–18×(5–)7–12 μm, finely granulate, brownish – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-42-4-19.

Radula retroflexa Taylor

Fig. 118: Oil bodies 3–4 per cell, oblong 10–16×5–9 μm, coarsely granulate, commonly with 1–several eyes – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-30-11-19.
Frullaniaceae

Frullania apiculata (Reinw., Blume et Nees) Nees
Fig. 119: Oil bodies 2–3 per cell, spherical, 2–3 μm in diameter, oblong 3–8×2–2.5 μm, nearly smooth – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-13-13-20.

Fig. 120: Oil bodies 2–4 per cell, spherical, 2–3 μm in diameter, oblong 2–4×2–3 μm, smooth to loosely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin, v-2-13-16.

Frullania appendiculata Steph.
Fig. 121: Oil bodies 5–10 per cell, spherical, 1.5–3 μm in diameter, oblong 3–5×1.5–3 μm, granulate; ocelli in biseriate row, 20–30×15–18 μm, granulate, brownish – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-32-2-17.

Frullania austinii J.J. Atwood, Vilnet, Mamontov & Konstant.
Fig. 122: Oil bodies 6–10 per cell, spherical, 2–4 μm in diameter, nearly smooth – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-68-1-15.

Comment: the specimens regarded for a long time as F. bolanderi from Russian Asia belong in fact to F. austinii, as shown by Mamontov et al. (2020).

Frullania brotheri Steph.
Fig. 123: Oil bodies 4–6 per cell, spherical, 4–7 μm in diameter, oblong 6–13×4–6 μm, coarsely granulate, brownish – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-21-5-19.

Frullania consociata Steph.
Fig. 124: Oil bodies (2–)3–5 per cell, spherical, 4–6 μm in diameter, oblong 6–9×4–6 μm, granulate – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-32-4-17.

Frullania crispiplicata Yuzawa et S.Hatt.
Fig. 125: Oil bodies 4–6 per cell, spherical, 4–6 μm in diameter, oblong 5–10×4–6 μm, granulate – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-34-1-16.

Frullania davurica Hampe ex Gottsche
Fig. 126: Oil bodies 6–10 per cell, spherical, 2–4 μm in diameter, oblong 6–10×4–6 μm, granulate – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-33-9-17.

Fig. 127: Oil bodies 6–9 per cell, spherical, 4–6 μm in diameter, oblong 5–11×4–6 μm, granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-14-21-16.
Liverwort oil body diversity in Pacific Asia

Frullania davurica Hampe ex Gottsche

Fig. 128: Oil bodies 6–10 per cell, spherical, 4–6 μm in diameter, oblong 5–10×4–6 μm, granulate – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-30-26-14.

Frullania diversitexta Steph.

Fig. 129: Oil bodies 5–8 per cell, spherical, 4–6 μm in diameter, oblong 6–10×4–6 μm, granulate – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-33-6-16.

Frullania duthiana var. *szechuanensis* S.Hatt. et C.Gao

Fig. 130: Oil bodies 4–8 per cell, spherical, 3–5 μm in diameter, oblong 5–8×3–4 μm, granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-77-32-18.

Frullania ericoideae (Nees) Mont.

Fig. 131: Oil bodies 4–8 per cell, spherical, 3–6 μm in diameter, oblong 5–9×3–6 μm, coarsely granulate – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-29-8-19.

Frullania fuscovirens Steph.

Fig. 132: Oil bodies 2–5 per cell, spherical, 4–6 μm in diameter, oblong 5–13×4–6 μm, coarsely granulate – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-22-1-19.

Frullania hypoleuca Nees

Fig. 133: Oil bodies (1–)2 per cell, spherical, 4–5 μm in diameter, oblong 5–9×3–5 μm, finely granulate – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-19-19-19_13.

Frullania ignatovii Sofronova, Mamontov et Potemkin

Fig. 134: Oil bodies 2–3 per cell, spherical, 3–6 μm in diameter, oblong 5–9×3–5 μm, finely granulate – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-19-19-19_7.

Frullania junghuhniana var. *tenella* (Sande Lac.) Grolle et S.Hatt.

Fig. 135: Oil bodies 6–10 per cell, spherical, 3–5 μm in diameter, oblong 4–8×3–5 μm, granulate – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-30-24-14.

Frullania jungughuiana var. *tenella* (Sande Lac.) Grolle et S.Hatt.

Fig. 136: Oil bodies 1–2×3 per cell, spherical, 2–3×4–μm in diameter, oblong 3–6×2.5–3.5(–4) μm, finely granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-28-20-20.
Frullania koponenii S.Hatt.

Fig. 137: Oil bodies 2–5 per cell, spherical, 4–7 μm in diameter, oblong 5–8×4–6 μm, finely granulate – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-35-16-17.

Fig. 138: Oil bodies 3–6 per cell, spherical, 3–5 μm in diameter, oblong 4–7×2–4 μm, granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-31-5-16.

Comment: specimen of F. koponenii from Khabarovsk territory was collected near its locus classicus. Its areolations differs from that in specimen from Sichuan Province, China. This may imply that Chinese specimen belong to another species, pataively undescribed.

Frullania moniliata (Reinw., Blume et Nees) Mont.

Fig. 139: Oil bodies 3–5 per cell, oblong 4–6×2–3 μm, granulate – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-30-38-19.

Frullania muscicola Steph.

Fig. 140: Oil bodies 7–10 per cell, spherical, 4–6 μm in diameter, oblong 5–9×4–6 μm, granulate – RUSSIA, PRIMORSKY TERRITORY, Bakalin, P-34-2-14.

Frullania nepalensis (Spreng.) Lehm. et Lindenh.

Fig. 141: Oil bodies 4–6 per cell, spherical, 3–5 μm in diameter, oblong 4–8×3–5 μm, granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-74-5-18.

Fig. 142: Oil bodies 3–6 per cell, spherical, 3–4 μm in diameter, oblong 4–5×3–4 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin, v-1-37-16.

Fig. 143: Oil bodies 3–6 per cell, spherical, 3–5 μm in diameter, oblong 4–6×3–4 μm, finely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-6-10-19.

Frullania parvistipula Steph.

Fig. 144: Oil bodies 3–6 per cell, spherical, 4–6 μm in diameter, oblong 6–8×4–6 μm, granulate – RUSSIA, PRIMORSKY TERRITORY, Klimova, prim-115-6-17.

Frullania serrata Gottsche.

Fig. 145: Oil bodies 2–4 per cell, spherical, 2–3 μm in diameter, oblong 3–7×2–3 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin, v-1-41-16.
Frullania sinensis Steph.
Fig. 146: Oil bodies 5–9 per cell, spherical, 4–6 μm in diameter, oblong 6–9×4–6 μm, granulate – RUSSIA, PRIMORSKY TERRITORY, Klimova, prim-111-21-17.

Frullania subarctica Vilnet, Borovich. et Bakalin
Fig. 147: Oil bodies 2–6 per cell, spherical, 3–5 μm in diameter, oblong 4–7×2–4 μm, granulate; ocelli sparse, oblong, 20–25×15–20 μm, granulate – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-66-6-15.

Frullania tagawana (S.Hatt. et Thaithong) S.Hatt.
Fig. 148: Oil bodies 2–6 per cell, spherical, 3–5 μm in diameter, oblong 4–7×3–4 μm, loosely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-83-4-18.

Frullania takayensis Steph.
Fig. 149: Oil bodies 3–7 per cell, spherical, 4–6 μm in diameter, oblong 6–9×4–5 μm, granulate – RUSSIA, PRIMORSKY TERRITORY, Klimova, prim-79-23-17.

Fig. 150: Oil bodies 5–8 per cell, spherical, 3–6 μm in diameter, oblong 6–8×4–6 μm, granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-44-2-16.

Frullania usamiensis Steph.
Fig. 151: Oil bodies 5–8 per cell, spherical, 5–6 μm in diameter, oblong 5–10(–13)×5–6 μm, granulate to finely so – REPUBLIC OF KOREA, GANGWON-DO, Bakalin, kor-65-2-19.

Frullania yuennanensis Steph.
Fig. 152: Oil bodies 4–8 per cell, spherical, 2.5–4 μm in diameter, oblong 3–6×2.5–4 μm, granulate – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-32-1-17.

Fig. 153: Oil bodies 3–6 per cell, spherical, 3–4 μm in diameter, oblong 4–9×3–4 μm, granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-88-29-18.

Fig. 154: Oil bodies 3–6 per cell, spherical, 3–5 μm in diameter, oblong 4–8×3–5 μm, finely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-9-6-19.

Comment: Strong variation in cell network was observed in F. yuennanensis.
Jubulaceae

Jubula japonica Steph.

Fig. 155: Oil bodies 4–5(6) per cell, spherical, 5–7 μm in diameter, oblong 5–12×5–7 μm, nearly smooth, with central eye – JAPAN, KOCHI PREFECTURE, Bakalin, j-4-24-15.

Comment: the biconcentric oil bodies in *J. japonica* may be the consequence of deterioration process in the specimens, although we inclined to believe that this feature is associated with other differences, including also genetic.

Jubula javanica Steph.

Fig. 156: Oil bodies 5–8(–9) per cell, spherical, 4–6 μm in diameter, oblong 5–13×4–5 μm, granulate, brownish, sometimes with central eye – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-15-7-19.

Fig. 157: Oil bodies 6–10 per cell, spherical, 4–6 μm in diameter, oblong 6–12×4–5 μm, finely granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-9-21-20.

Neohattoria herzogii (S.Hatt.) Kamim.

Fig. 158: Oil bodies 8–17 per cell, spherical, 2–3 μm in diameter, oblong 3–5×2–3 μm, smooth – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-41-18-18.

Nipponolejeunea pilifera (Steph.) S.Hatt.

Fig. 159: Oil bodies 3–4 per cell, oblong 6–12×3–5 μm, botryoidal, sometimes biconcave – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-69-9-15.

Fig. 160: Oil bodies 3–5 per cell, oblong 5–11×3–4(–6) μm, granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-73-13-19.

Fig. 161: Oil bodies 2–3 per cell, spherical, 2–3 μm in diameter, oblong 4–7(–9)×2–3 μm, granulate – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-90-13-15.

Comment: *N. pilifera* possesses variation in oil body and leaf cell sizes across distribution area.

Nipponolejeunea subalpina (Horik.) S.Hatt.

Fig. 162: Oil bodies 2–3×5–6 per cell, spherical, 2–3 μm in diameter, oblong 3–4(–5)×2.0–2.5 μm, finely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-44-5-18.

Fig. 163: Oil bodies 3–8 per cell, spherical, 1.5–2.5 μm in diameter, oblong 2–4(–5)×1.5–2.5 μm, finely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-70-49-15.
Liverwort oil body diversity in Pacific Asia

Lejeuneaceae

Acanthocoleus yoshinaganius (S.Hatt.) Kruijt

Fig. 164: Oil bodies 8–20 per cell, spherical, 3–5 μm in diameter, oblong 4–8×3–5 μm, smooth to finely granulate – JAPAN, KOCHI PREFECTURE, Bakalin, j-11-25-15.

Acrolejeunea infuscata (Mitt.) Jian Wang bis et Gradst.

Fig. 165: Oil bodies 13–24 per cell, spherical, 2.5–4 μm in diameter, smooth – CHINA, YUNNAN PROVINCE, Bakalin, c-88-26-18.

Fig. 166: Oil bodies 8–22 per cell, oblong, 2–3×3–6 μm, smooth – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-4-64-17.

Acrolejeunea recurvata Gradst.

Fig. 167: Oil bodies 15–23 per cell, spherical, 2.5–4 μm in diameter, oblong 2–3×3–6 μm, smooth – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-13-15-17.

Acrolejeunea sandvicensis (Gottsche) Steph.

Fig. 168: Oil bodies 22–32 per cell, spherical, 1.5–2.5 μm in diameter, oblong 2–4×1.5–2 μm, smooth – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-23-4-19.

Fig. 169: Oil bodies 15–21 per cell, spherical, 2–3 μm in diameter, oblong 2–3×3–5 μm, smooth – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-32-1-19.

Cheilolejeunea longiloba (Steph. ex G.Hoffm.) J.J.Engel & B.C.Tan

Fig. 170: Oil bodies 2 per cell, oblong 16–22×8–12 μm, botryoidal – VIETNAM, LAO CAI PROVINCE, Bakalin, v-2-64-16.

Comment: Zhu et al. (2002) synonymized *C. longiloba* with *C. trapezia*, but we suggest this issue needs further study.

Cheilolejeunea obtusifolia (Steph.) S.Hatt.

Fig. 171: Oil bodies 2–3 per cell, spherical, 3–5 μm in diameter, oblong (4–)8–12×3–5 μm, granulate – REPUBLIC OF KOREA, GYEONGSANGNAM-DO, Bakalin, kor-70-3-19_0004.

Fig. 172: Oil bodies 2–3 per cell, oblong 8–15×5–7 μm, finely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-48-8-16.
Cheilolejeunea osumiensis (S.Hatt.) Mizut.
Fig. 173: Oil bodies 1 per cell, oblong 10–23×6–8 μm, coarsely granulate to botryoidal, sausage-shaped – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-28-26-20 8.

Fig. 174: Oil bodies 1 per cell, oblong 20–35(–45)×7–11 μm, coarsely granulate to botryoidal, sausage-shaped – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-28-26-20 9.

Cheilolejeunea trapezia (Nees) Kachroo et R.M.Schust.
Fig. 175: Oil bodies 1(–2) per cell, oblong 10–14×12–25 μm, botryoidal – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-30-7a-19.

Cheilolejeunea trifaria (Reinw., Blume et Nees) Mizut.
Fig. 176: Oil bodies 2–5 per cell, spherical, 6–8 μm in diameter, oblong 6–18×6–8 μm, botryoidal – VIETNAM, LAO CAI PROVINCE, Bakalin, v-2-17c-16.

Cololejeunea cheni Tixier
Fig. 177: Oil bodies 4–8 per cell, spherical, 2–5 μm in diameter, oblong 3–6×2–4μm, smooth – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-25-9a-19.

Cololejeunea denticulata (Horik.) S.Hatt.
Fig. 178: Oil bodies 9–26 per cell, spherical, 2–3 μm in diameter, oblong 2–4×2–3 μm, smooth – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-3-29-17.

Cololejeunea dozyana (Sande Lac.) Schiffn.
Fig. 179: Oil bodies 5–9 per cell, spherical, 2–5 μm in diameter, oblong 3–7×2–4 μm, finely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin, v-2-20-16.

Cololejeunea gottschei (Steph.) Pandit, K.P.Srivast. et Ahmad
Fig. 180: Oil bodies 4–10 per cell, spherical, 3–6 μm in diameter, oblong 3–5×4–7 μm, botryoidal – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-14-16-19.

Cololejeunea haskarliana (Lehm.) Schiffn.
Fig. 181: Oil bodies 5–10 per cell, spherical, 2–4 μm in diameter, oblong 2–5×2–4 μm, smooth – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-3-2-19.
Cololejeunea japonica (Schiffn.) Mizut.
Fig. 182: Oil bodies 4–8 per cell, spherical, 2–5 μm in diameter, oblong 4–10×3–4 μm, granulate – JAPAN, TOTTORI PREFECTURE, Bakalin, j-1-19-13.

Cololejeunea longifolia (Mitt.) Benedix ex Mizut.
Fig. 183: Oil bodies 6–33 per cell, spherical, 2–5 μm in diameter, oblong 3–4×4–6 μm, coarsely granulate to botryoidal – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-23-8a-19.

Cololejeunea macounii (Spruce) A.Evan
Fig. 184: Oil bodies 3–6 per cell, spherical, 1.5–2 μm in diameter, oblong 2–4×1.5–2 μm, smooth – RUSSIA, PRIMORSKY TERRITORY, Klimova & Bakalin, prim-16-36-16.

Cololejeunea ornata A.Evans
Fig. 185: Oil bodies 4–6 per cell, spherical, 2–4 μm in diameter, oblong 4–8×1.5–3 μm, finely granulate – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-36-5-16.

Cololejeunea schmidtii Steph
Fig. 186: Oil bodies 4–9 per cell, rarely spherical, 2–3 μm in diameter, oblong 4–8×2–4 μm, finely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin, v-8-59-16.

Cololejeunea shikokiana (Horik.) S.Hatt.
Fig. 187: Oil bodies 3–6 per cell, spherical, 2–3 μm in diameter, oblong 3–5×2–3 μm, finely granulate to nearly smooth – VIETNAM, LAO CAI PROVINCE, Bakalin, v-3-84-16.

Cololejeunea spinosa (Horik.) Pandé et R.N.Misra
Fig. 188: Oil bodies 4–10 per cell, spherical, 2–3 μm in diameter, oblong 3–4×2–3 μm, nearly smooth – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-4-6-19.

Fig. 189: Oil bodies 4–8 per cell, spherical, 2–3 μm in diameter, oblong 3–5×2–3 μm, smooth – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-5-5-20.

Fig. 190: Oil bodies 4–6(–10) per cell, spherical, 2–3 μm in diameter, oblong 3–5×2–3 μm, smooth – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-5-9-20.
Cololejeunea trichomanis (Gottsche) Besch.
Fig. 191: Oil bodies 7–10 per cell, rarely spherical, 4–5 μm in diameter, oblong 5–10×2.5–4 μm, botryoidal – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-1-4-20.

Fig. 192: Oil bodies 7–15 per cell, spherical, 3–4 μm in diameter, oblong 3–4×4–8 μm, granulate to botryoidal – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-23-8-19.

Fig. 193: Oil bodies 8–19 per cell, spherical, 4–5 μm in diameter, oblong 3–5×5–9 μm, botryoidal – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-27-2-19.

Cololejeunea yakusimensis (S.Hatt.) Mizut.
Fig. 194: Oil bodies 6–10 per cell, spherical, 2–3 μm in diameter, oblong (3–)4–10×2–3 μm, granulate to coarsely so – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-1-5b-20.

Fig. 195: Oil bodies 3–6 per cell, spherical, 2–4 μm in diameter, oblong 3–10×2–4 μm, botryoidal – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-1-7-17.

Colura herzogii Jovet-Ast
Fig. 196: Oil bodies 16–30 per cell, spherical, 2–3 μm in diameter, oblong 4–6×2–3 μm, finely granulate – INDONESIA, JAVA ISLAND, Bakalin, java-3-61b-15.

Colura tenuicornis (A.Evans) Steph.
Fig. 197: Oil bodies 6–8 per cell, spherical, 2–3 μm in diameter, oblong 3–4×2–3 μm, smooth – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-5-12-20.

Drepanolejeunea angustifolia (Mitt.) Grolle
Fig. 198: Oil bodies 2–4 per cell, spherical, 4–7 μm in diameter, oblong 6–15×4–6 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-10-37-17.

Fig. 199: Oil bodies 1 per cell, spherical, 5–7 μm in diameter, oblong 6–15×5–7 μm, finely granulate – INDONESIA, JAVA ISLAND, Bakalin, java-3-38-15.
Drepanolejeunea angustifolia (Mitt.) Grolle
Fig. 200: Oil bodies 3–5 per cell, spherical, 4–7 μm in diameter, oblong 5–14×4–6 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-10-45-17.

Drepanolejeunea commutata Grolle et R.L.Zhu
Fig. 201: Oil bodies 4–6 per cell, spherical, 3–6(–7) μm in diameter, oblong 5–9×4–5 μm, granulate to finely so – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-11-44-20_3.

Fig. 202: Oil bodies 2–4 per cell, spherical, 4–7 μm in diameter, oblong 5–10×4–6 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-3-29-17.

Drepanolejeunea dactylophora (Nees, Lindenb. et Gottsche) J.B.Jack et Steph.
Fig. 203: Oil bodies 3–5 per cell, spherical, 2–7 μm in diameter, ocelli 2–4 per leaf lobe, 16–18×22–25 μm – INDONESIA, JAVA ISLAND, Bakalin, java-3-63-15.

Drepanolejeunea herzogii R.L.Zhu et M.L.So
Fig. 204: Oil bodies 2–4 per cell, spherical, 3–5 μm in diameter, oblong 4–8×3–5 μm, granulate; ocelli 1 per leaf lobe, basal, 38×18 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin, v-1-22b-16.

Drepanolejeunea thwaitesiana (Mitt.) Steph
Fig. 205: Oil bodies absent in unspecialized cells; ocelli several per leaf lobe, 23–28×10–15 μm, loosely granulate – INDONESIA, JAVA ISLAND, Bakalin, java-3-58-15.

Drepanolejeunea yunnanensis (P.C.Chen) Grolle et R.L.Zhu
Fig. 206: Oil bodies 4–7 per cell, spherical, 4–7 μm in diameter, granulate to coarsely so – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-26-32-20.

Lejeunea alaskana (R.M.Schust. et Steere) Inoue et Steere
Fig. 207: Oil bodies 6–10(14) per cell, spherical, 2–3 μm in diameter, oblong 4–6×2–3 μm, granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-23-4-16.

Fig. 208: Oil bodies 7–10(14) per cell, spherical, 3–5 μm in diameter, oblong 4–7×3–5 μm, granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-56-24-19.
Lejeunea alata Gottsche
Fig. 209: Oil bodies 8–18(–20) per cell, spherical, 3–5 μm in diameter, oblong 5–8(–10)×3–4 μm, smooth, some biconcave – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-6-10-20.

Lejeunea anisophylla Mont.
Fig. 210: Oil bodies 9–22 per cell, spherical, 3–5 μm in diameter, oblong 5–7×3–5 μm, coarsely granulate – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-30-43-19.

Lejeunea aquatica Horik.
Fig. 211: Oil bodies 11–30 per cell, spherical, 2–5 μm in diameter, oblong 4–10×2–5 μm, smooth – JAPAN, TOTTORI PREFECTURE, Bakalin, j-2-14-13.

Lejeunea cocoes Mitt.
Fig. 212: Oil bodies 4–7 per cell, spherical, 2–4 μm in diameter, oblong 5–12×2–4 μm, granulate – VIETNAM, LÃO CAI PROVINCE, Bakalin, v-1-32-16.

Lejeunea aff. discreta Lindenb.
Fig. 213: Oil bodies 10–12(15) per cell, spherical, 3–4 μm in diameter, oblong 5–7(8)×3–4 μm, smooth – VIETNAM, LÃO CAI PROVINCE, Bakalin & Klimova, v-17-2-19.

Comment. Lee (2013) described finely granulate oil bodies in the species, not completely smooth as in our specimen. We were unable to find the correct name for the specimen cited here as L. aff. discreta.

Lejeunea eifrigii Mizut.
Fig. 214: Oil bodies (4–)6–10 per cell, spherical, 4–5 μm in diameter, oblong 6–14×4–5 μm, granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-5-6a-20.

Lejeunea flava (Sw.) Nees
Fig. 215: Oil bodies 12–22 per cell, spherical, 3–5 μm in diameter, oblong 5–8×3–5 μm, granulate – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-49-12-17.

Fig. 216: Oil bodies in dorsal lobe 4–6 per cell, spherical, 2.5–3.5 μm in diameter, oblong 4–7(–9)×2.5–3.5 μm, granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-79-3a-19.

Fig. 217: Oil bodies (4–)5–6 per cell, spherical, 3–4 μm in diameter, oblong 4–9×3–4 μm, granulate to coarsely so – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-28-23-20.
Liverwort oil body diversity in Pacific Asia

Lejeunea hui R.L. Zhu

Fig. 218: Oil bodies 7–13(16) per cell, spherical, 2–3 μm in diameter, oblong 3–5×2–3 μm, smooth – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-25-9e-19.

Lejeunea japonica Mitt.

Fig. 219: Oil bodies 15–30 per cell, spherical, 2–3 μm in diameter, oblong 4–5×2–3(4) μm, smooth – CHINA, YUNNAN PROVINCE, Bakalin, c-72-9-18.

Fig. 220: Oil bodies 15–30 per cell, spherical, 2–3 μm in diameter, oblong 3–5×2–3 μm, smooth – JAPAN, TOTTORI PREFECTURE, Bakalin, j-6-1-13.

Fig. 221: Oil bodies in dorsal lobe 20–35 per cell, spherical, 3–4 μm in diameter, oblong 3–7×2.5–3.5 μm, smooth – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-70-20-19.

Lejeunea kodamae Ikegami et Inoue

Fig. 222: Oil bodies 5–7(–10) per cell, spherical, 3–5 μm in diameter, oblong 4–7(8)×3–4 μm, granulate – JAPAN, KOCHI PREFECTURE, Bakalin, j-8-54-15.

Lejeunea magohukui Mizut.

Fig. 223: Oil bodies 10–40 per cell, spherical, 2–3 μm in diameter, granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-13-24-17_3.

Fig. 224: Oil bodies 20–40 per cell, spherical, (2–)3–4 μm in diameter, oblong 4–8×2–4 μm, granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-13-24-17_6.

Lejeunea neelgherriana Gottsche

Fig. 225: Oil bodies 2–4 per cell, spherical, 3–5 μm in diameter, oblong 5–8×3–4(5) μm, granulate – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-30-28-19.

Fig. 226: Oil bodies 3–5 per cell, spherical, 2–5 μm in diameter, oblong 4–10×2–4 μm, finely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-4-37-17.
Lejeunea obscura Mitt.

Fig. 227: Oil bodies 15–30 per cell, spherical, 2–4 μm in diameter, oblong 4–8×2–4 μm, smooth – CHINA, GUIZHOU PROVINCE, Bakalin, china-50-12-13.

Fig. 228: Oil bodies 20–35 per cell, spherical, 3–4 μm in diameter, oblong 4–7×3–4 μm, smooth – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-25-4-19.

Fig. 229: Oil bodies 10–14 per cell, rarely spherical, (2–)3 μm in diameter, oblong 3–7×2–2.5 μm, smooth – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-6-5-20.

Lejeunea pallidevirens S.Hatt.

Fig. 230: Oil bodies 3–5 per cell, spherical, 4–5 μm in diameter, oblong 5–8×4–5 μm, finely granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-13-5-20.

Fig. 231: Oil bodies 3–6 per cell, spherical, 4–5 μm in diameter, oblong 6–10×3–4(6) μm, granulate to coarsely so – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-14-2-19.

Fig. 232: Oil bodies 7–15 per cell, spherical, 3–4(5) μm in diameter, oblong 5–10×3–4(5) μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin, v-2-59-16.

Lejeunea papilionacea Prantl

Fig. 233: Oil bodies 8–18 per cell, spherical, 3–4(–5) μm in diameter, oblong 4–8(10)×3–4 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-1-1-17.

Lejeunea parva (S.Hatt.) Mizut.

Fig. 234: Oil bodies 3–5(–6) per cell, spherical, 3–4 μm in diameter, oblong 3–7×2–4 μm, granulate – REPUBLIC OF KOREA, GYEONGSANGNAM-DO, Bakalin, kor-70-3a-19.

Fig. 235: Oil bodies 6–8 per cell, spherical, 3.5–4 μm in diameter, oblong 4–8×3–4 μm, finely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-2-5-19.
Lejeunea parva (S.Hatt.) Mizut.
Fig. 236: Oil bodies 3–5 per cell, spherical, 3–4 μm in diameter, oblong 6–10×3–4(5) μm, finely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-9-5-19.

Lejeunea sordida (Nees) Nees
Fig. 237: Oil bodies 15–25 per cell, spherical, 3–4 μm in diameter, oblong 4–7×3–4 μm, smooth – CHINA, YUNNAN PROVINCE, Bakalin, c-73-19-18.

Lejeunea subacuta Mitt.
Fig. 238: Oil bodies 5–7 per cell, spherical, 1.5–2.5 μm in diameter, oblong 3–5×1.5–2 μm, finely granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-26-26-20.

Fig. 239: Oil bodies 4–6 per cell, spherical, 3–4 μm in diameter, oblong 6–10×3–4 μm, finely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-6-30-17.

Lejeunea tuberculosa Steph.
Fig. 240: Oil bodies 3–5 per cell, spherical, 3–5 μm in diameter, oblong 6–10×3–4 μm, granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-12-15-19.

Leptolejeunea balansae Steph.
Fig. 241: Oil bodies 3–5 per cell, spherical, 2–2.5 μm in diameter, smooth – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-3-5-20.

Leptolejeunea elliptica (Lehm. et Lindenb.) Besch.
Fig. 242: Oil bodies 2–4 per cell, spherical, 1–2 μm in diameter, smooth, ocelli less than 8 per leaf lobe, spherical, 15–23 μm in diameter, oblong 20–50×18–35 μm, granulate, brownish – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-32-20-19_5.

Fig. 243: – Oil bodies 2–4 per cell, spherical, 1–2 μm in diameter, smooth, ocelli 3–5 per leaf lobe, 15–25×15–25 granulate, brownish – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-32-20-19_8.

Leptolejeunea latifolia Herzog
Fig. 244: Oil bodies 3–6 per cell, spherical, 1.5–3 μm in diameter, oblong 2–4×1–2 μm, ocelli 35–40×26–30, granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin, v-2-18k-16.
Leptolejeunea maculata (Mitt.) Schiffn.
Fig. 245: Oil bodies 2–6(7) per cell, oblong 2–6×1–1.5 μm, botryoidal – INDONESIA, JAVA ISLAND, Bakalin, java-3-48-15.

Leucolejeunea paroica N.Kitag.
Fig. 246: Oil bodies 2(–4) per cell, oblong 16–28×6–8 μm, botryoidal – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-13-13-19.

Comment: Cheilolejeunea kitagawae W.Ye et R.L.Zhu (Ye & Zhu, 2010) is suggested nomen novum for Leucolejeunea paroica N.Kitag, to treat Leucolejeunea as the synonym of Cheilolejeunea.

Leucolejeunea turgida (Mitt.) Verd.
Fig. 247: Oil bodies 3–6 per cell, oblong 8–16×3–5 μm, granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-82-9-18.
Fig. 248: Oil bodies in lobe margin 3–4 per cell, spherical, 4–5 μm in diameter, oblong 5–9×4–6 μm, botryoidal to loosely segmented – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-13-21-20.

Fig. 249: Oil bodies 2–3 per cell, oblong 13–22×4–5 μm, coarsely granulate – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-30-10-20.

Leucolejeunea xanthocarpa (Lehm. & Lindenb.) A. Evans
Fig. 250: Oil bodies 1 per cell, oblong 13–25×6–7 μm, coarsely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-13-12-20.

Fig. 251: Oil bodies 1(–2) per cell, oblong 17–24×7–10 μm, botryoidal to coarsely granulate – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-30-42-19.

Fig. 252: Oil bodies 1(–3) per cell, spherical, 8–12 μm in diameter, oblong 12–18×6–10 μm, botryoidal – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-6-38-17.

Lopholejeunea appplanata (Reinw., Blume et Nees) Schiffn.
Fig. 253: Oil bodies 7–12 per cell, spherical, 1.5–2 μm in diameter, oblong 2–3(–4)×1.5–2 μm, smooth – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-28-22-20.
Lopholejeunea applanata (Reinw., Blume et Nees) Schiffn.
Fig. 254: Oil bodies (8)12–15 per cell, spherical, 3–4 μm in diameter, oblong 4–8×3–4 μm, smooth – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-30-19-19.

Lopholejeunea eulopha (Taylor) Schiffn.
Fig. 255: Oil bodies (8)10–12(14) per cell, spherical, 2–3 μm in diameter, oblong 3–5(6)×2–3 μm, smooth – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-14-5-19.

Lopholejeunea nigricans (Lindenb.) Schiffn.
Fig. 256: Oil bodies 9–13(15) per cell, oblong 3–5×1–1.5 μm, smooth to loosely segmented – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-28-7-19.

Fig. 257: Oil bodies 7–15 per cell, spherical, 1.5–2 μm in diameter, oblong 3–4×1.5–2 μm, smooth to loosely segmented – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-30-19-19.

Lopholejeunea subfusca (Nees) Schiffn.
Fig. 258: Oil bodies 5–12 per cell, spherical, 1.5–2 μm in diameter, oblong 4–7×1.5–2 μm, nearly smooth – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-1-12-17.

Lopholejeunea zollingeri (Steph.) Schiffn.
Fig. 259: Oil bodies (6–)8–14 per cell, spherical, 1.5–2 μm in diameter, oblong 2–4×1.5–2 μm, smooth – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-21-8-20.

Mastigolejeunea humilis (Gottsche) Schiffn.
Fig. 260: Oil bodies 2–4 per cell, oblong 4–11×3–5 μm, coarsely granulate – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-30-10-19.

Fig. 261: Oil bodies 2–3 per cell, spherical, 4–5(7) μm in diameter, oblong 5–15(17)×4–6 μm, coarsely granulate – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-32-11-19.

Metalejeunea cucullata (Reinw., Blume et Nees) Grolle
Fig. 262: Oil bodies 2–3(–4) per cell, spherical, 1–2 μm in diameter, oblong 2–3×1–2 μm, finely granulate – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-19-5-19.
Microlejeunea punctiformis (Taylor) Steph.

Fig. 263: Oil bodies in dorsal lobe 2–4 per cell, spherical, 1.5–2.0 μm in diameter, oblong 2–3×1.5–2.0 μm, nearly smooth, ocelli 1–3 per leaf dorsal lobe, finely granulate, 10–12 μm in diameter to oblong 15×12 μm, brownish — REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-30-7-15_3.

Fig. 264: Oil bodies in dorsal lobe 2–4 per cell, spherical, 2.0–2.5 μm in diameter, oblong 2.5–4.0×2.0–2.5 μm, nearly smooth, ocelli 1 per leaf dorsal lobe, finely granulate, 16×13 μm, brownish — REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-30-7-15_4.

Fig. 265: Oil bodies absent, ocelli 1–2 per leaf, 17–20×14–16 μm, granulate — VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-2-18j-16.

Ptychanthus striatus (Lehm. et Lindenb.) Nees

Fig. 266: Oil bodies (4–)7–9 per cell, oblong 4–6×3–4 μm, botryoidal — VIETNAM, LAO CAI PROVINCE, Bakalin, v-2-18j-16.

Spruceanthus semirepandus (Nees) Verd.

Fig. 267: Oil bodies 5–9 per cell, spherical, 3–4 μm in diameter, oblong 4–5×(2–)3–4 μm, botryoidal to coarsely granulate — VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-4-19-17.

Thysananthus aculeatus Herzog

Fig. 268: Oil bodies 20–35 per cell, rarely spherical, 1.5–2 μm in diameter, oblong 2–4×1.5–2 μm, smooth — VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-13-8-20.

Fig. 269: Oil bodies 20–35 per cell, spherical, 1.5–2(–2.5) μm in diameter, oblong 2–3(–4)×(1–)1.5–2 μm, smooth — VIETNAM, LAO CAI PROVINCE, Bakalin, v-2-132-16.

Fig. 270: Oil bodies 23–35 per cell, spherical, 1.5–2 μm in diameter, oblong 2–4×(1–)1.5–2 μm, smooth — VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-4-19-19.

Thysananthus aculeatus Herzog

Fig. 271: Oil bodies in lower half of leaf dorsal lobe 3–4(–6) per cell, rarely spherical, 3–4 μm in diameter, oblong 4–12×3(–4) μm, granulate — VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-30-39-19.
Liverwort oil body diversity in Pacific Asia

Thysananthus spathulistipus (Reinw., Blume et Nees) Lindenb.
Fig. 272: Oil bodies (2–)3–4 per cell, oblong 3–6×2–3 μm, finely granulate – INDONESIA, JAVA ISLAND, Bakalin, java-3-35-15.

Tuzibeanthus chinensis (Steph.) Mizut.
Fig. 273: Oil bodies 4–6 per cell, rarely spherical, 3–4 μm in diameter, oblong 4–8×3–4 μm, granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-72-2-18.

Fig. 274: Oil bodies 7–9 per cell, spherical, 4–6 μm in diameter, oblong 5–12×4–5 μm, botryoidal – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-13-1-17.

Ptilidiaceae

Ptilidium ciliare (L.) Hampe
Fig. 275: Oil bodies 20–32 per cell, spherical, 2–3 μm in diameter, botryoidal – RUSSIA, AMUR PROVINCE, Bakalin, am-69-6-18.

Ptilidium pulcherrimum (Weber) Vain.
Fig. 276: Oil bodies 20–30(–35) per cell, spherical, 2–3 μm in diameter, oblong 3–4(–5)×2.0–2.5 μm, loosely botryoidal – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-37-9-18.

Neotrichocoleaceae

Neotrichocolea bissetii (Mitt.) S.Hatt.
Fig. 277: Oil bodies (8–)13–15 per cell, spherical, (3–)4–5 μm in diameter, oblong 4–8×3–5 μm, nearly smooth, some biconcave – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-71-4-19.

Trichocoleopsis sacculata (Mitt.) S.Okamura
Fig. 278: Oil bodies 8–20 per cell, spherical, (2–)3(–4) μm in diameter, oblong 3–5(–8)×2–3 μm, finely granulate – RUSSIA, PRIMORSKY TERRITORY, Klimova & Bakalin, prim-16-5-16.

Schistochilaceae

Schistochila aligera (Nees et Blume) J.B.Jack et Steph
Fig. 279: Oil bodies 24–35 per cell, spherical, 2.5–4 μm in diameter, coarsely granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-26-24-20.

Fig. 280: Oil bodies 15–27 per cell, spherical, 3–4(–5) μm in diameter, coarsely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-3-10-19.
Schistochila blumei (Nees) Trevis.

Fig. 281: Oil bodies 9–17 per cell, spherical, 3–5 μm in diameter, oblong 5–7(–9)×3–4(–5) μm, finely granulate – INDONESIA, JAVA ISLAND, Bakalin, java-3-29-15.

Fig. 282: Oil bodies 6–17 per cell, spherical, 3–4 μm in diameter, oblong 3–8×2–3 μm, finely granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-11-39-20.

Fig. 283: Oil bodies 12–18 per cell, spherical, (3–)4–5 μm in diameter, oblong 5–6(–8)×4–5 μm, granulate to finely so – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-23-9-19.

Schistochila sciurea (Nees) Schiffn.

Fig. 284: Oil bodies 9–14 per cell, spherical, 4–5 μm in diameter, rarely oblong 5–6×4–5 μm, granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-14-17-20.

Pseudolepicoleaceae

Pseudolepicolea andoi (R.M.Schust.) Inoue

Fig. 285: Small putative oil bodies 13–50 per cell, spherical, 0.5(–1.0) μm in diameter, smooth – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-7-7a-17.

Trichocoleaceae

Trichocolea pluma (Reinw., Blume et Nees) Mont.

Fig. 286: Oil bodies 5–7 per cell, spherical, 4–5 μm in diameter, oblong 5–8(–11)×4–5 μm, finely granulate to smooth, some with 1–2 eyes – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-24-1-19.

Fig. 287: Oil bodies 4–6 per cell, oblong 5–10×3–4 μm, finely granulate or spherical, 2–4 μm in diameter to oblong 3–7×2–4 μm, with 1–2 eyes, nearly smooth – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-26-1-20.

Fig. 288: Oil bodies 3–6 per cell, spherical, 3–4 μm in diameter, nearly smooth, with 1(–2) eyes – VIETNAM, LAO CAI PROVINCE, Bakalin, v-2-89-16.

Fig. 289: Oil bodies 5–10 per cell, spherical, 4–6 μm in diameter, oblong 5–10×4–6 μm, finely granulate or spherical, 2–4(–6) μm in diameter, with 1 eye, nearly smooth – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-32-5-20.
Liverwort oil body diversity in Pacific Asia

Trichocolea pluma (Reinw., Blume et Nees) Mont.

Fig. 290: Oil bodies 5–7 per cell, oblong 4–12×3–5 μm, finely granulate or spherical, 3–4 μm in diameter to oblong, 4–10×3–5 μm, with 1–2 eyes, nearly smooth – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-7-12-17.

Comment: The distinction of *T. pluma* from *T. tomentella* based on smooth-surfaced biconcentric oil bodies in the former versus finely granulate nonbiconcentric in the latter (Katagiri, 2013) is unreliable since both ‘types’ may occur within the same leaf.

Mastigophoraceae

Mastigophora diclados (Brid. ex F.Weber) Nees

Fig. 292: Oil bodies 4–6(7) per cell, rarely spherical, 4–6 μm in diameter, commonly oblong 6–18×4–6(–8) μm, smooth to segmented – INDONESIA, JAVA ISLAND, Bakalin, java-3-13-15.

Comment: *M. diclados* from Java possesses smooth to segmented oil bodies without the traces of deterioration. If it is the feature of regional population is unclear for us.

Mastigophora woodsi (Hook.) Nees

Fig. 293: Oil bodies 5–7(8) per cell, spherical, 4–6 μm in diameter, oblong 5–12×4–6 μm, finely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-7-12-17.

Herbertaceae

Herbertus arcticus (Inoue et Steere) Schljakov

Fig. 294: Oil bodies 4–7 per cell, to 10 per vitta cell, spherical, 3–5(6) μm in diameter, oblong 5–8×3–4 μm, smooth to unclearly segmented – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-33-4-16.

Fig. 295: Oil bodies 2–6 per cell, to 10 per vitta cell, spherical, 4–6 μm in diameter, oblong 5–8×4–6 μm, smooth – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-30-34-14.

Herbertus armitanus (Steph.) H.A.Mill.

Fig. 296: Oil bodies 7–11 per cell, to 18 per vitta cell, spherical, 4–6 μm in diameter, oblong 6–10×4–6 μm, smooth, biconcave – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-36-16-17.

Fig. 297: Oil bodies 6–12 per cell, spherical, 2–3 μm in diameter, oblong 5–10×2–3–4 μm, smooth to loosely segmented – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-15-12a-20.

Herbertus delavayi (Steph.) Steph.

Fig. 298: Oil bodies 8–15 per cell, to 26 per vitta cell, spherical, 3–6 μm in diameter, oblong 6–8×3–5 μm, loosely granulate, sometimes biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-81-28-18.

Trichocolea pluma (Reinw., Blume et Nees) Mont.

Fig. 291: Oil bodies 5–7 per cell, spherical, 3–4 μm in diameter, oblong 4–6×3–4 μm, nearly smooth to very finely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-7-9-19.

Fig. 290: Oil bodies 5–7 per cell, oblong 4–12×3–5 μm, finely granulate or spherical, 3–4 μm in diameter to oblong, 4–10×3–5 μm, with 1–2 eyes, nearly smooth – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-32-5-20.
Herbertus delavayi (Steph.) Steph.
Fig. 299: Oil bodies 4–7(9) per cell, to 13 per vitta cell, spherical, 2–4 μm in diameter, oblong 3–5×2–3 μm, smooth, biconcave – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-3-12-19.

Herbertus kurzii (Steph.) R.S.Chopra
Fig. 300: Oil bodies 3–6 per cell, to 12 per vitta cell, spherical, 4–6 μm in diameter, oblong 4–8×3–5 μm, smooth, sometimes biconcave – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-44-6-17.

Fig. 301: Oil bodies 3–4(6) per cell, to 10 per vitta cell, spherical, 2–4 μm in diameter, nearly smooth – CHINA, YUNNAN PROVINCE, Bakalin, c-81-37-18.

Herbertus ramosus (Steph.) H.A.Mill.
Fig. 302: Oil bodies 5–8 per cell, to 18 per vitta cell, spherical, 3–4 μm in diameter, oblong 4–6×3–4 μm, smooth, sometimes biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-73-26-18.

Fig. 303: Oil bodies (3–)5–8, in vitta cells to 18 per cell, spherical, 2.5–4 μm in diameter, oblong 3–7×2–4 μm, smooth – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-23-5-20.

Fig. 304: – Oil bodies 2–4(−5) per cell, spherical, 2–2.5 μm in diameter, oblong 2–5×1.5–2.5 μm, smooth – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-23-5-20.

Herbertus aff. sendtneri (Nees) Lindb.
Fig. 305: Oil bodies 10–21 per cell, spherical, 3–4 μm in diameter, oblong 4–6×2–4 μm, nearly smooth, biconcave – CHINA, SICHUAN PROVINCE, Bakalin, c-85-40-18.

Lepidioziaceae
Bazzania angustistipula N.Kitag.
Fig. 306: Oil bodies 2–3 per cell, spherical, 4–6 μm in diameter, oblong 4–6×5–11 μm, finely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-78-8-18.

Bazzania asperrima Steph
Fig. 307: Oil bodies 4–6 per cell, oblong 5–8×10–15 μm, somewhat biconcave, smooth – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-32-23-19.
Liverwort oil body diversity in Pacific Asia

Bazzania asperrima Steph
Fig. 308: Oil bodies 4–5 per cell, oblong 7–18×4–9 μm, smooth, some biconcave – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-32-4-20.

Bazzania bidentula (Steph.) Yasuda
Fig. 309: Oil bodies 2–6 per cell, spherical, (2–)3–4(–5)μm in diameter, oblong 3–5×4(5)–8(10) μm, smooth – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-22-2-19.

Fig. 310: Oil bodies 4–6 per cell, spherical, 2–5 μm in diameter, rarely oblong 4–6×3–5 μm, smooth – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-14-18-20.

Comment: B. bidentula shows so strong morphological variation that suggests some new taxa should be segregated from it. The similar great variation was observed in midleaf cells trigone sizes, although the latter parameter is varied also within the same specimen, including type (Pleuroschisma bidentulum Steph., G00264760).

Bazzania calcarata (Sande Lac.) Schiffn.
Fig. 311: Oil bodies 3–6(–7) per cell, oblong 6–8×12–25 μm, smooth – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-31-31-19.

Bazzania denudata (Lindenb. et Gottsche) Trevis.
Fig. 312: Oil bodies 6–10 per cell, spherical, 3–5 μm in diameter, oblong 3–5×4–11 μm, smooth – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-35-28-14.

Bazzania erosa (Reinw., Blume et Nees) Trevis.
Fig. 313: Oil bodies 2–4(–7) per cell, oblong, 4–8×5–11 μm, smooth – INDONESIA, JAVA ISLAND, Bakalin, java-3-87-15.

Bazzania fauriana (Steph.) S.Hatt.
Fig. 314: Oil bodies 3–5(–7) per cell, oblong 5–7×10–20 μm, smooth to loosely segmented – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-30-13-19.

Bazzania himalayana (Mitt.) Schiffn.
Fig. 315: Oil bodies 6–8 per cell, oblong 7–13×4–7 μm, smooth – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-13-17-20.

Fig. 316: Oil bodies 3–7(8) per cell, spherical, 4–7 μm in diameter, oblong 4–6×6–12 μm, smooth – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-3-19-19.
Bazzania imbricata (Mitt.) S. Hatt.
Fig. 317: Oil bodies 2–3(–5) per cell, spherical, 3–7 μm in diameter, oblong, 4–6×6–11 μm, granulate – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-87-37-15.
Fig. 318: Oil bodies 2–4 per cell, rarely spherical, 5–7 μm in diameter, oblong 5–8×4–5 μm, finely granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-73-10-19.
Fig. 319: Oil bodies 3–4(–5) per cell, rarely spherical, (3–)4–5 μm in diameter, oblong 6–11×4–6 μm, finely granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-75-3-19.
Comment: We accept this species following Furuki (2015), Zhou et al. (2021) and Söderström et al. (2016) don’t accept it.

Bazzania japonica (Sande Lac.) Lindb.
Fig. 320: Oil bodies 6–14 per cell, spherical, 4–7 μm in diameter, oblong 4–6×5–13 μm, smooth – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-21-24-19.

Bazzania linguiformis (Sande Lac.) Trevis.
Fig. 322: Oil bodies 3–6 per cell, oblong, 5–10×6–18 μm, smooth – INDONESIA, JAVA ISLAND, Bakalin, java-3-17-15
Bazzania aff. mayebarae S.Hatt.
Fig. 323: Oil bodies 5–8 per cell, oblong 4–8×3–4 μm, smooth to loosely segmented – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-9-8-20.
Comment: We admit that B. mayebarae (described from Japan) and B. debilis N. Kitag. (from Thailand) are conspecific.
Bazzania oshimensis (Steph.) Horik.
Fig. 324: Oil bodies 3–6 per cell, spherical, 3–7 μm in diameter, oblong 5–8×6–15 μm, smooth, sometimes biconcave – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-20-9-19.
Comment: B. oshimensis may be conspecific with B. tridens.
We retain it here awaiting for further revision.

Bazzania parabidentula Bakalin
Fig. 325: Oil bodies 3–8 per cell, spherical, 4–6 μm in diameter, oblong, 3–4×4–14 μm, smooth to loosely segmented – RUSSIA, PRIMORSKY TERRITORY, Klimova, prim-49-9-17.
Bazzania pearsonii Steph.

Fig. 326: Oil bodies 2–4(–5) per cell, oblong 4–8×5–14 μm, smooth to loosely segmented – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-8-9-19.

Fig. 327: Oil bodies 3–4 per cell, spherical, 2–3 μm in diameter, oblong 3–7×2–3(–4) μm, smooth – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-25-30-20_2.

Fig. 328: Oil bodies 3–6 per cell, spherical, 2.5–4 μm in diameter, oblong 4–7×3–4 μm, smooth – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-25-30-20_4.

Fig. 329: Oil bodies 2–4 per cell, spherical, 4–5 μm in diameter, oblong 5–10×3–6 μm, smooth, some biconcave – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-11-27-20_2.

Bazzania praerupta (Reinw., Blume et Nees) Trevis.

Fig. 330: Oil bodies 2–5 per cell, spherical, 2–3 μm in diameter, oblong 4–8×3–5 μm, smooth to loosely segmented – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-32-27-19.

Bazzania revoluta (Steph.) N.Kitag.

Fig. 331: Oil bodies 3–5 per cell, spherical, 2.5–4 μm in diameter, oblong 4–7×3–4 μm, smooth to loosely segmented – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-26-13-20.

Fig. 332: Oil bodies 2–5 per cell, spherical, 2–3 μm in diameter, oblong 3–8×2–3 μm, smooth to loosely segmented – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-31-34-20.

Fig. 333: Oil bodies 2–3 per cell, spherical, 3–4(–5) μm in diameter, oblong 4–7×3–4 μm, smooth – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-8-3-20.

Bazzania revoluta (Steph.) N.Kitag.
Bazzania sikkimensis (Steph.) Herzog

Fig. 335: Oil bodies (2–)3–6 per cell, spherical, 2–4 μm in diameter, oblong 4–6×5–10 μm, smooth to segmented – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-8-15-19.

Bazzania tricrenata (Wahlenb.) Lindb.

Fig. 336: Oil bodies 2–4 per cell, spherical, 3–5 μm in diameter, oblong 4–5×5–10 μm, smooth, with very big central eye – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-50-23-19.

Fig. 337: Oil bodies 3–5 per cell, spherical, 4–6 μm in diameter, oblong 4–5×5–10 μm, smooth with very big central eye – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-44-7-17.

Fig. 338: Oil bodies 2–6 per cell, spherical, 4–6 μm in diameter, oblong 4–6×5–10 μm, smooth to loosely segmented – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-39-14-14.

Comment: East Asian populations of *B. tricrenata* always have prominently biconcentric oil bodies, where the ‘eye’ may be as wide or wider that the width of the main body of oil body (Bakalin, 2016).

Bazzania tridens (Reinw., Blume et Nees) Trevis.

Fig. 339: Oil bodies (3–)5–6 per cell, spherical, 4–7 μm in diameter, oblong 4–5×5–10 μm, smooth to segmented – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-11-1-20.

Fig. 340: Oil bodies 3–5 per cell, spherical, 3–5 μm in diameter, oblong 4–8×8–18 μm, smooth, biconcave – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-20-14-19.

Fig. 341: Oil bodies 7–9 per cell, oblong 7–15×4–8(–10) μm, nearly smooth, sometimes biconcave – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-30-6-20.

Bazzania trilobata (L.) Gray

Fig. 342: Oil bodies 6–12 per cell, spherical, 4–7 μm in diameter, oblong 3–6×5–10 μm, smooth to loosely segmented – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-39-14-14.

Fig. 343: Oil bodies 5–8 per cell, oblong 6–12(–14)×4–6 μm, segmented – REPUBLIC OF KOREA, GANGWON-DO, Bakalin, kor-66-10-19.
Bazzania uncinera (Reinw., Blume et Nees) Trevis.
Fig. 344: Oil bodies 5–10 per cell, spherical, (4–)5–7 μm in diameter, oblong 6–10(–12)×4–6(–7) μm, nearly smooth – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-2-1-20_10.

Fig. 345: Oil bodies 5–8 per cell, rarely spherical, 4–5 μm in diameter, oblong 6–13(4–)5–7 μm, nearly smooth to slightly segmented – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-2-1-20_8.

Fig. 346: Oil bodies 4–7 per cell, rarely spherical, 4–5 μm in diameter, oblong 7–13×4–5 μm, smooth to segmented – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-9-11-20.

Bazzania vietnamica Pòcs

Fig. 347: Oil bodies 4–6 per cell, spherical, 5–6(–7) μm in diameter, oblong 7–15×5–6 μm, smooth to segmented – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-30-31-20.

Fig. 348: Oil bodies 2–4 per cell, spherical, 4–6 μm in diameter, oblong 6–13×4–5 μm, smooth, sometimes segmented – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-31-30a-20.

Fig. 349: Oil bodies 4–7(–8) per cell, spherical, 4–6 μm in diameter, oblong 7–13×5–6 μm, smooth to segmented – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-8-4-20_14.

Fig. 350: Oil bodies (2–)3–6(–7) per cell, spherical, 4–6 μm in diameter, oblong 6–10(12)×4–5–6 μm, smooth – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-8-4-20_16.

Bazzania yoshinagana (Steph.) Yasuda

Fig. 351: Oil bodies 4–8 per cell, spherical, 4–6 μm in diameter, oblong 3–6×5–12 μm, smooth to loosely segmented – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-88-15-15.

Fig. 352: Oil bodies 5–10 per cell, very rarely spherical, 5–7 μm in diameter, oblong 4–6×10–20 μm, smooth to segmented – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-32-25-19.
Lepidozia fauriana Steph.
Fig. 353: Oil bodies 3–6 per cell, spherical, 3–4 μm in diameter, oblong 4–8(10)×3–4 μm, granulate – CHINA, GUIZHOU PROVINCE, Bakalin, china-56-80-13.
Fig. 354: Oil bodies 5–10 per cell, spherical, 4–6 μm in diameter, oblong 5–10(–16)×4–6 μm, botryoidal – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-1-9-19.
Lepidozia omeiensis P.C.Chen ex Mizut. et K.C.Chang
Fig. 355: Oil bodies 7–10 per cell, spherical, 4–6 μm in diameter, oblong 5–9×4–5 μm, smooth – CHINA, YUNNAN PROVINCE, Bakalin, c-73-25-18.
Lepidozia reptans (L.) Dumort.
Fig. 356: Oil bodies 10–25 per cell, spherical, 4–5 μm in diameter, oblong 6–10×3–5 μm, smooth, sometimes biconcave – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-35-10-17.
Lepidozia subintegra Lindenb.
Fig. 357: Oil bodies 3–8 per cell, spherical, 2–3 μm in diameter, oblong 2–5×1.5–3μm, botryoidal to segmented – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-3-57-17.
Lepidozia subtransversa Steph.
Fig. 358: Oil bodies 4–10(15) per cell, spherical, 2–4 μm in diameter, oblong 3–6×2–4μm, smooth – RUSSIA, Khabarovsk Territory, Bakalin, kh-24-6-16.
Lepidozia suyangii C.Gao et X.L.Bai
Fig. 359: Oil bodies 5–8 per cell, spherical, 3–4 μm in diameter, oblong 4–8×3–4 μm, smooth to segmented and loosely botryoidal – CHINA, YUNNAN PROVINCE, Bakalin, c-81-27-18.
Lepidozia trichodes (Reinw., Blume et Nees) Nees
Fig. 360: Oil bodies 3–6(8) per cell, spherical, 2–4 μm in diameter, oblong 3–8×2–4 μm, botryoidal – INDONESIA, JAVA ISLAND, Bakalin, java-3-33-15.
Lepidozia vitrea Steph.
Fig. 361: Oil bodies 3–5(7) per cell, oblong 5–12×3–5 μm, finely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin, v-1-99-16.
Liverwort oil body diversity in Pacific Asia

Tricholepidozia neesii (Lindenb.) E.D.Cooper

Fig. 362: Oil bodies 6–9 per cell, spherical, 3–4 μm in diameter, oblong 5–10(–12)×3–4 μm, granulate – INDONESIA, JAVA ISLAND, Bakalin, java-3-90-15.

Comment: the species is widely known under Telaranea neesii (Lindenb.) Fulford.

Zoopsis liukiuensis Horik.

Fig. 363: Oil bodies 5–7 per cell, oblong 7–10×3–4 μm, granulate with some large granules; with numerous small putative oil bodies 0.5–1.0 μm in diameter, smooth – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-13-4-19.

Lophocoleaceae

Chiloscyphus pallescens (Ehrh.) Dumort.

Fig. 364: Oil bodies 2–5 per cell, spherical, 4–7 μm in diameter, oblong 4–7×5–10 μm, finely granulate – RUSSIA, KRASNOYARSK TERRITORY, Fedosov, v/47a.

Chiloscyphus polyanthos (L.) Corda

Fig. 365: Oil bodies 1–3 per cell, spherical, 5–7 μm in diameter, oblong 5–14×4–7 μm, granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-71-13-18.

Fig. 366: Oil bodies 2–3 per cell, oblong 6–14×5–7 μm, granulate – REPUBLIC OF KOREA, GYEONGSANGNAM-DO, Bakalin, kor-69-2-19.

Chiloscyphus rivularis (Schrad.) Hazsl.

Fig. 367: Oil bodies 2–3 per cell, spherical, 5–8 μm in diameter, oblong 8–18×6–8 μm, coarsely granulate – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-8-2-16.

Heteroscyphus argutus (Reinw., Blume et Nees) Schiffn.

Fig. 368: Oil bodies 3–6 per cell, spherical, 4–5 μm in diameter, oblong 6–12×4–5 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-2-31-17.

Fig. 369: Oil bodies 4–6(–7) per cell, rarely spherical, 4–6 μm in diameter, oblong 6–12(14)×4–5 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-2-72-16.

Fig. 370: Oil bodies 8–10(14) per cell, spherical, 4–6 μm in diameter, oblong 6–10(12)×4–6 μm, granulate, brownish – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-3-8-19.
Heteroscyphus coalitus (Hook.) Schiffn.
Fig. 371: Oil bodies 4–5(–6) per cell, oblong 6–8(20)×5–7 μm, coarsely granulate – INDONESIA, JAVA ISLAND, Bakalin, java-3-82-15.
Fig. 372: Oil bodies 3(4)–6 per cell, spherical, 5–6 μm in diameter, oblong 7–14(16)×5–6(7) μm, granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin, v-2-28-16.

Heteroscyphus planus (Mitt.) Schiffn.
Fig. 373: Oil bodies 8–10 per cell, spherical, 4–6 μm in diameter, oblong 6–10(–12)×4–6 μm, granulate to coarsely so – JAPAN, KOCHI PREFECTURE, Bakalin, j-4-19-15.
Fig. 374: Oil bodies (2)3–7(8) per cell, spherical, 3–5 μm in diameter, oblong 6–10×4–5 μm, granulate to coarsely so – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-31-4-15.

Heteroscyphus tener (Steph.) Schiffn.
Fig. 375: Oil bodies 2–3 per cell, oblong 5–12×4–6 μm, finely granulate – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-40-2-17.
Fig. 376: Oil bodies 2–4 per cell, rarely spherical, 5–7 μm in diameter, oblong 6–14(–16)×5–6(–7) μm, finely granulate, some biconcave – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-25-19-20.
Fig. 377: Oil bodies 2–4 per cell, rarely spherical, 5–6 μm in diameter, oblong 7–15×5–6 μm, finely granulate, some biconcave – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-25-36-20.

Heteroscyphus zollingeri (Gottsche) Schiffn.
Fig. 378: Oil bodies 6–11 per cell, spherical, 5–7 μm in diameter, oblong 6–12(14)×5–7 μm, botryoidal – CHINA, GUIZHOU PROVINCE, Bakalin, china-51-8-13.
Fig. 379: Oil bodies 4–5(6) per cell, oblong 8–15(17)×3–4 μm, coarsely granulate – INDONESIA, JAVA ISLAND, Bakalin, java-1-2-15.
Heteroscyphus zollingeri (Gottsche) Schiffn.

Fig. 380: Oil bodies 5–7 per cell, rarely spherical, 4–5 μm in diameter, oblong 5–10(–12)×(3–)4–6 μm, coarsely granulate to almost botryoidal – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-31-3-20.

Fig. 381: Oil bodies 6–7(9) per cell, spherical, 5–7 μm in diameter, oblong 6–10×5–7 μm, botryoidal to coarsely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-3-71-17.

Comment: the name H. zollingerii is likely applied to a complex of several species, and the oil bodies variation support this. The species was described from Java, thus oil bodies shown in Fig. 379 may likely characterize H. zollingerii s.str.

Lophocolea bidentata (L.) Dumort.

Fig. 382: Oil bodies (3–)4–7 per cell, rarely spherical, 3–4 μm in diameter, oblong 4–9×3–4 μm, finely granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-13-15-20.

Fig. 383: Oil bodies 5–10 per cell, spherical, 3–5 μm in diameter, oblong 6–10×3–5 μm, granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-6-9-19.

Lophocolea cuspidata (Nees) Limpr.

Fig. 384: Oil bodies 4–7 per cell, spherical, oblong 7–12×3–5 μm, granulate – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-36-14-17.

Comment: L. cuspidata may be a synonym of L. bidentata.

Lophocolea heterophylla (Schrad.) Dumort.

Fig. 385: Oil bodies 3–5 per cell, spherical, 3–5 μm in diameter, oblong 5–12×3–6 μm, granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-43-1-16.

Lophocolea horikawana S.Hatt.

Fig. 386: Oil bodies 4–6(–7) per cell, spherical, 4–5 μm in diameter, oblong 6–13×4–5 μm, granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-80-17-19.

Lophocolea kurzii Sande Lac.

Fig. 387: Oil bodies 5–8(9) per cell, spherical, (3–)4–6 μm in diameter, finely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-8-12a-19.

Lophocolea minor Nees

Fig. 388: Oil bodies 5–9 per cell, spherical, 3–4(–5) μm in diameter, oblong 5–8×3–4 μm, granulate – RUSSIA, Khabarovsk TERRITORY, Bakalin & Klimova, kh-36-10-19.
Lophocolea minor Nees

Fig. 389: Oil bodies 4–6 per cell, spherical, 4–5 μm in diameter, oblong 5–10×3–4(–5) μm, finely granulate, some bicconcave – REPUBLIC OF KOREA, GANGWON-DO, Bakalin, kor-66-20-19.

Fig. 390: Oil bodies 9–13(16) per cell, spherical, 4–7(8) μm in diameter, oblong 5–12(14)×4–6 μm, coarsely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-5-22-17.

Comment: in L. minor oil body surface features, number per cell, and sizes, and also cell sizes are variable. We suspect that plants from Khabarovsky Territory, Korean Peninsula and Vietnam may be not conspecific.

Lophocolea muricata (Lehm.) Nees

Fig. 391: Oil bodies 2–5 per cell, spherical, 3–4 μm in diameter, oblong 4–7(8)×2–5 μm, finely granulate – CHINA, GUIZHOU PROVINCE, Bakalin, china-56-34-13.

Fig. 392: Oil bodies 2–3 per cell, spherical, 2.5–3.5(–4) μm in diameter, oblong 3–8×2.5–3.5 μm, granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-28-6-20.

Lophocolea sikkimensis (Steph.) Herzog et Grolle

Fig. 393: Oil bodies 2–5 per cell, spherical, 5–7 μm in diameter, oblong 7–18×4–8 μm, granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin, v-3-64-16.

Plagiochilaceae

Pedinophyllum interruptum (Nees) Kaal.

Fig. 394: Oil bodies 8–13(–15) per cell, spherical, 3–4(–5) μm in diameter, oblong 4–6(–7)×3–4 μm, granulate – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-37-8-16.

Pedinophyllum truncatum (Steph.) Inoue

Fig. 395: Oil bodies 7–12(–13) per cell, spherical, 5–6 μm in diameter, oblong 5–13×4–5(–6) μm, finely granulate – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-31-8-15.

Fig. 396: Oil bodies 10–15 per cell, spherical, 4–5(–6) μm in diameter, oblong 7–10(–13)×4–5 μm, finely granulate, brownish – RUSSIA, PRIMORSKY TERRITORY, Klimova & Bakalin, prim-19-9-16.

Plagiochila arctica Bryhn et Kaal.

Fig. 397: Oil bodies 5–8 per cell, spherical, 4–5 μm in diameter, oblong 4–10×3–4 μm, botryoidal to coarsely granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-41-8-19.
Plagiochila arctica Bryhn et Kaal.

Fig. 398: Oil bodies 4–6(–7) per cell, spherical, 4–5 μm in diameter, oblong 5–10×3–4 μm, botryoidal to coarsely granulate – RUSSIA, Krasnoyarsk Territory, Fedosov, v83.

Plagiochila assamica Steph.

Fig. 399: Oil bodies 4–8 per cell, spherical, 3–5 μm in diameter, oblong 4–12×3–4 μm, botryoidal – VIETNAM, Lao Cai Province, Bakalin, v-1-48-16.

Fig. 400: Oil bodies in leaf base 5–9(–11) per cell, spherical, 3–4 μm in diameter, oblong 5–12×3–4(–5) μm, coarsely granulate – VIETNAM, Hoa Binh Province, Bakalin & Klimova, v-30-29-19.

Plagiochila bantamensis (Reinw., Blume et Nees) Mont.

Fig. 401: Oil bodies 4–6(–7) per cell, oblong 6–13×4–5 μm, botryoidal – INDONESIA, Java Island, Bakalin, java-3-20-15.

Plagiochila beddomei Steph.

Fig. 402: Oil bodies 5–8(–12) per cell, rarely spherical, 5–6 μm in diameter, oblong 5–13×4–6 μm, granulate to coarsely so – VIETNAM, Ha Giang Province, Bakalin & Klimova, v-13-34-20.

Fig. 403: Oil bodies 4–7(–9) per cell, rarely spherical, 5–6 μm in diameter, oblong 5–14×4–5(–6) μm, granulate – VIETNAM, Cao Bang Province, Bakalin & Klimova, v-23-26-20.

Fig. 404: Oil bodies 5–8 per cell, spherical, 4–5 μm in diameter, oblong 7–12×4–5 μm, granulate to coarsely so – VIETNAM, Lao Cai Province, Bakalin & Klimova, v-4-49-17.

Plagiochila bicornuta Steph.

Fig. 405: Oil bodies 10–14 per cell, spherical, 4–6 μm in diameter, oblong 8–12×4–5 μm, botryoidal – INDONESIA, Java Island, Bakalin, java-3-36-15.

Plagiochila chinensis Steph.

Fig. 406: Oil bodies 5–10 per cell, spherical, 4–5 μm in diameter, oblong 7–10×4–5(–6) μm, loosely granulate – VIETNAM, Lai Chau Province, Bakalin & Klimova, v-4-14-19.
Plagiochila chinensis Steph.
Fig. 407: Oil bodies 3–5 per cell, spherical, 4–5 μm in diameter, oblong 6–15×4–5 μm, granulate to coarsely so – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-7-4-20.

Plagiochila devesa Steph.
Fig. 408: Oil bodies 2–4 per cell, spherical, 3–4 μm in diameter, oblong 4–5(–6)×(2–)3–4 μm, in vitta cells 6–8 per cell, 5–10×2–3 μm, loosely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-7-11-19.

Plagiochila durelii Schiffn.
Fig. 409: Oil bodies 4–8 per midleaf cell, spherical, 3–4(–5) μm in diameter, oblong 4–7×3–4 μm, loosely botryoidal – CHINA, YUNNAN PROVINCE, Bakalin, c-82-17-18_8.

Plagiochila elegans Mitt.
Fig. 410: Oil bodies in lower part of leaf 8–11 per cell, spherical, 3–4 μm in diameter, oblong 4–8×(2–)3–4 μm, in vitta cells 10–13 per cell, similar in size, loosely botryoidal – CHINA, YUNNAN PROVINCE, Bakalin, c-82-17-18_10.

Plagiochila flexuosa Mitt.
Fig. 411: Oil bodies in lower part of leaf 8–10(–12) per cell, oblong 10–15×3–4 μm, loosely botryoidal – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-8-10-19_12.

Plagiochila devexa Steph.
Fig. 412: Oil bodies 5–7 per cell, spherical, 3–4 μm in diameter, oblong 4–10(–12)×(2–)3–4 μm, loosely botryoidal – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-8-10-19_14.

Plagiochila flexuosa Mitt.
Fig. 413: Oil bodies 4–6 per cell, spherical, (4–)5–6 μm in diameter, oblong 6–12(–14)×(4–)5–6 μm, granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-9-24-20.

Plagiochila elegans Mitt.
Fig. 414: Oil bodies 6–8 per cell, oblong 7–17×5–7(–8) μm, smooth to segmented – VIETNAM, LAO CAI PROVINCE, Bakalin, v-1-124-16.

Plagiochila flexuosa Mitt.
Fig. 415: Oil bodies 5–8(–10) per cell, oblong 10–16(–18)×6–9 μm, segmented – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-14-1-19.
Plagiochila fruticosa Mitt.
Fig. 416: Oil bodies 7–10 per cell, spherical, 3–4 μm in diameter, oblong (4–)7–12(–14)×3–4 μm, botryoidal – VIETNAM, LÃO CAI PROVINCE, Bakalin, v-1-82-16.
Fig. 417: Oil bodies 5–8 per cell, spherical, 2.5–4.0 μm in diameter, oblong 4–5×2.5–3.5 μm, botryoidal – VIETNAM, LÃO CAI PROVINCE, Bakalin, v-2-33-16.
Fig. 418: Oil bodies 5–7 per cell, oblong 5–7(–)4–5 μm, botryoidal – VIETNAM, LÃO CAI PROVINCE, Bakalin & Klimova, v-5-76-17.
Fig. 419: Oil bodies 3–4(–5) per cell, oblong 5–13×3–4 μm, granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-8-2-20.

Plagiochila fusca Sande Lac.
Fig. 420: Oil bodies 4–7 per cell, oblong 14–18(–20)×4–5 μm, segmented – INDONESIA, JAVA ISLAND, Bakalin, java-3-83-15.

Plagiochila gracilis Lindenb. et Gottsche
Fig. 421: Oil bodies 5–8 per cell, spherical, 4–5 μm in diameter, oblong 6–10(–14)×4–6 μm, granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-81-3-18.
Fig. 422: Oil bodies (2–)4–6 per cell, spherical, 5–6 μm in diameter, oblong 6–12×4–6 μm, granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-25-3-20.
Fig. 423: Oil bodies in lower part of the leaf 5–9(–10) per cell, spherical, 5–6 μm in diameter, oblong 7–12×5–8 μm, granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-9-9-19_2.
Fig. 424: Oil bodies 4–6 per cell, spherical, 4–5 μm in diameter, oblong 6–12(–14)×4–5 μm, finely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-9-9-19_4.
Plagiochila gymnoclada Sande Lac.
Fig. 425: Oil bodies (5–)6–7(–8) per cell, spherical, 4–6 μm in diameter, oblong 6–12(–14)×4–6 μm, smooth to segmented – INDONESIA, JAVA ISLAND, Bakalin, java-3-6-15.

Plagiochila hakkodensis Steph.
Fig. 426: Oil bodies 4–6 per cell, spherical, 2–3 μm in diameter, oblong 4–5×2–3 μm, coarsely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-78-6-18.

Fig. 427: Oil bodies 4–6 per cell, spherical, 4–5 μm in diameter, oblong 5–12×(3–)4–5 μm, coarsely granulate – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-88-29-15.

Plagiochila hyalodermica Grolle et M.L.So
Fig. 428: Oil bodies 3–6 per cell, oblong 6–8(–10)×(2–)3–4 μm, unclearly granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-8-13-19_13.

Fig. 429: Oil bodies 3–4 per midleaf cell, spherical, 3–4 μm in diameter, oblong 4–7×3–4 μm, smooth – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-8-13-19_4.

Plagiochila khasiana Mitt.
Fig. 430: Oil bodies 5–11 per cell, spherical, 5–7 μm in diameter, oblong 8–16×4–6 μm, coarsely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-5-79-17.

Plagiochila nepalensis Lindenb.
Fig. 431: Oil bodies 7–10(–12) per cell, spherical, 4–5 μm in diameter, oblong 6–13(–15)×3–4(–5) μm, coarsely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-12-16-19_2.

Fig. 432: Oil bodies 6–11 per cell, spherical, 4–5 μm in diameter, oblong 8–11(–13)×4–5(–6) μm, coarsely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-12-16-19_4.

Plagiochila orbicularis (S.Hatt.) S.Hatt.
Fig. 433: Oil bodies 5–7 per cell, spherical, 4–6 μm in diameter, oblong (8–)10–14×4–5 μm, coarsely granulate – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-88-2-15.
Plagiochila ovalifolia Mitt.
Fig. 434: Oil bodies 4–6(–7) per cell, spherical, 4–5 μm in diameter, oblong 5–10×(3–)4–5 μm, granulate – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-34-3-17.
Fig. 435: Oil bodies 4–7 per cell, spherical, 3–4 μm in diameter, oblong 4–8(–10)×3–4(–5) μm, granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-27-9-16.
Fig. 436: Oil bodies 3–6 per cell, spherical, (4–)5–6 μm in diameter, oblong 5–12×4–5(–6) μm, granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-71-11-19.
Fig. 437: Oil bodies 7–12 per cell, spherical, (3–)4–5 μm in diameter, oblong 5–8(–12)×3–4 μm, granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-14-11-17.
Plagiochila parvifolia Lindenb.
Fig. 438: Oil bodies 7–9 per cell, spherical, 5–6 μm in diameter, oblong 5–8(–10)×4–5 μm, botryoidal – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-28-24-19.
Plagiochila peculiaris Schiffn.
Fig. 439. – Oil bodies in vitta 10–14 per cell, oblong (5–)7–9(–12)×4–5 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin, v-1-10-16_7.
Fig. 440. – Oil bodies 8–11 per cell, spherical, (3–)4–5 μm in diameter, oblong 5–8(–10)×(3–)4–5 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin, v-1-10-16_8.
Fig. 441: Oil bodies 6–10 per cell, spherical, 4–5(–6) μm in diameter, oblong 6–11(–14)×4–5 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-3-38-17.
Plagiochila poetii Inoue et Grolle
Fig. 442: Oil bodies 3–6 per cell, spherical, 3–4 μm in diameter, oblong 4–7×3–4 μm, finely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-83-28-18.
Plagiochila porelloides (Torr. ex Nees) Lindenb.

Fig. 443: Oil bodies 3–6 per cell, oblong 5–12(–17)×3–4(–5) μm, botryoidal – RUSSIA, AMUR PROVINCE, Bakalin, am-69-7-18.

Fig. 444: Oil bodies 4–8 per cell, spherical, 3–4 μm in diameter, oblong 4–6(–8)×3–4 μm, botryoidal – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-32-5-17.

Fig. 445: Oil bodies 4–10 per cell, spherical, 3–4(–5) μm in diameter, oblong 4–8×3–4(–5) μm, botryoidal – RUSSIA, Khabarovsk Territory, Bakalin & Klimova, kh-33-1-19.

Plagiochila pseudofirma Herzog

Fig. 446: Oil bodies 4–8 per cell, spherical, 4–5 μm in diameter, oblong 5–12×3–5 μm, granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-10-14-20.

Fig. 447: Oil bodies 4–6(–7) per cell, rarely spherical, 5 μm in diameter, oblong 7–14×4–6 μm, granulate to coarsely so – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-25-3a-20.

Comment: P. pseudofirma shows variation in oil bodies and cell wall features that may suspect the taxonomic differences between plants in different specimens.

Plagiochila pseudopoeltii Inoue

Fig. 448: Oil bodies 4–8(–10) per cell, spherical, 4–5(–6) μm in diameter, oblong 4–7(–10)×3–5 μm, botryoidal – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-21-12-19.

Fig. 449: Oil bodies 6–8 per cell, spherical, 3–4 μm in diameter, oblong 6–10(–12)×3–4 μm, granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-4-13-19.

Plagiochila recurvata (W.E.Nicholson) Grolle

Fig. 450: Oil bodies (2–)3–4 per cell, spherical, 4–5 μm in diameter, oblong 8–12(–15)×4–5 μm, granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-85-5-18.

Plagiochila retusa Mitt.

Fig. 451: Oil bodies 2–5 per cell, spherical, 3–4 μm in diameter, oblong 4–7×2–3(–4) μm, loosely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-81-7-18.
Liverwort oil body diversity in Pacific Asia

Plagiochila salacensis Gottsche
Fig. 452: Oil bodies (6–)8–13 per cell, spherical, 3–4(–5) μm in diameter, oblong 5–10×3–4 μm, granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, ν-6-23-20.

Plagiochila satoi S. Hatt.
Fig. 453: Oil bodies 6–9 per cell, spherical, 3–4 μm in diameter, oblong 4–8×3–4 μm, loosely botryoidal – CHINA, YUNNAN PROVINCE, Bakalin, c-83-11-18.
Comment: the species status is questionable, but we suggest it is better to recognize it until integrative research will be done.

Fig. 454: Oil bodies 4–7 per cell, spherical, 3–4 μm in diameter, oblong 5–10×3–4 μm, botryoidal – REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-79-3-19.

Plagiochila sciophila Nees
Fig. 455: Oil bodies (6–)8–10 per cell, spherical, 4–5 μm in diameter, oblong 5–7×3–5 μm, botryoidal – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-37-1-16.

Fig. 456: Oil bodies 7–12 per cell, spherical, 4–5 μm in diameter, oblong 6–12(–14)×4–5 μm, granulate – CHINA, GUIZHOU PROVINCE, Bakalin, china-51-24-13.
Fig. 457: Oil bodies 7–11 per cell, spherical, 4–5 μm in diameter, oblong 7–12×4–5 μm, granulate – REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-30-4-15.

Plagiochila laxiretis (mod.)
Fig. 458: Oil bodies 5–6 per cell, oblong 12–18(–20)×5–6 μm, granulate, brownish – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, ν-30-8-19.

Fig. 459: Oil bodies (6–)8–10 per cell, spherical, 4–5 μm in diameter, oblong 5–9×3–5 μm, granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, ν-11-31-20.

Fig. 460: Oil bodies 6–10 per cell, spherical, 4–6 μm in diameter, oblong 5–10(–12)×3–5 μm, granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, ν-25-3a-20.
Plagiochila semidecurrens (Lehm. et Lindenb.) Lindenb.

Fig. 461: Oil bodies 5–8(–11) per cell, spherical, 3–4(–5) μm in diameter, oblong 5–8(–12)×(3–)4–5 μm, granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-25-36-20.

Fig. 462: Oil bodies 4–7 per cell, spherical, 2–3 μm in diameter, oblong 3–4(–5)×2–3 μm, loosely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-5-32-17.

Fig. 463: Oil bodies 6–9 per cell, spherical, 3–4 μm in diameter, oblong 4–6×3–4 μm, loosely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-8-3-17.

Fig. 464: Oil bodies 4–7 per cell, to 12 per vitta cell, spherical, 3–4 μm in diameter, oblong 4–6(–8)×3–4 μm, loosely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-8-3-17.

Plagiochila sichotensis Bakalin & Vilnet

Fig. 465: Oil bodies 10–18 per cell, spherical, 6–8 μm in diameter, oblong 6–14×5–7 μm, granulate, brownish – RUSSIA, PRIMORSKY TERRITORY, Bakalin & Arutinov, Arutinov-1-15-13.

Plagiochila subtropica Steph.

Fig. 466: Oil bodies 5–8 per cell, spherical, 4–6 μm in diameter, oblong 6–12(–16)×4–5 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin, v-1-87-16.

Fig. 467: Oil bodies 4–8 per cell, spherical, 4–5 μm in diameter, oblong 5–13×4–5 μm, granulate – VIETNAM, SON LA PROVINCE, Bakalin & Vilnet, v-21-3-19.

Plagiochila trabeculata Steph.

Fig. 468: Oil bodies 5–8 per cell, oblong 5–10×4–5 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-9-25-17_4.

Fig. 469: Oil bodies 6–8 per cell, oblong 5–10(–12)×4–5 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-9-25-17_5.
Plagiochila vexans Schiffn. ex Steph.
Fig. 470: Oil bodies 3–8 per cell, to 10 per vitta cell, oblong 5–10×3–4 μm, granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-88-25-18_7.

Fig. 471. – Oil bodies 4–7 per cell, spherical, 3–4 μm in diameter, oblong 3–4(–5)×(2–)3–4 μm, loosely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-88-25-18_8.

Plagiochila zonata Steph.
Fig. 472. – Oil bodies 4–7 per cell, spherical, 2–4 μm in diameter, oblong (3–)4–5×(2–)3–4 μm, granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-81-18b-18.

Plagiochilion fimbriatum (Mitt.) Inoue
Fig. 473. – Oil bodies (3–)4–6 per cell, spherical, 4–5 μm in diameter, oblong 6–10(–14)×4–5 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-10-43-17_2.

Fig. 474. – Oil bodies 3–5 per cell, spherical, 4–6 μm in diameter, oblong 7–12(–14)×4–5(–6) μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-10-43-17_3.

Fig. 475. – Oil bodies 4–6 per cell, spherical, 4–5 μm in diameter, oblong 5–15×4–5 μm, granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-13-28-20_3.

Plagiochilion mayebarae S.Hatt.
Fig. 476. – Oil bodies (2–)3–6 per cell, oblong 4–13×3–5 μm, granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-13-28-20_8.

Plagiochilion oppositum (Reinw., Blume et Nees) S.Hatt.
Fig. 477: Oil bodies 5–7 per cell, oblong 8–13(–16)×4–5 μm, botryoidal – INDONESIA, JAVA ISLAND, Bakalin, java-3-12-15.

Fig. 478: Oil bodies 3–4 per cell, rarely spherical, 5 μm in diameter, oblong 6–15×4–6 μm, granulate to finely so – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-28-39-20.

Comment: P. oppositum shows botryoidal oil bodies in Java Island (from where described), while the oil bodies in Vietnam are granulate that may suspect taxonomical differences of Vietnamese (or all continental mainland) populations from Javanese ones.
Plagiochilion theriotanum (Steph.) Inoue

Fig. 479: Oil bodies 4–7 per cell, oblong 8–13(–15)×4–5 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-6-4-17.

Jamesoniellaceae

Cuspidatula contracta (Reinw., Blume et Nees) Steph.

Fig. 480: Oil bodies (3–)5–8 per cell, spherical, 3–5 μm in diameter, oblong 4–8×3–4 μm, granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-28-29-20.

Syzygiella autumnalis (DC.) K.Feldberg, Váňa, Hentschel et Heinrichs

Fig. 481: Oil bodies 5–10(–12) per cell, spherical, 4–8 μm in diameter, oblong 8–15×4–7 μm, granulate to finely so – REPUBLIC OF KOREA, GANGWON-DO, Bakalin, k-65-1-19.

Fig. 482: Oil bodies 5–8 per cell, spherical, 4–6 μm in diameter, oblong 5–10×4–5(6) μm, granulate – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-10-8-16.

Syzygiella elongella (Taylor) K.Feldberg, Váňa, Hentschel et Heinrichs

Cephaloziaceae

Alobiellopsis parvifolia (Steph.) R.M.Schust.

Fig. 486: Oil bodies 2–3 per cell, oblong, 5–7×9–13 μm, granulate, grayish – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-76-3-15.

Cephalozia conchata (Grolle et Váňa) Váňa

Fig. 487: Small putative oil bodies 20–40 per cell, spherical, 0.5–1 μm in diameter, smooth – VIETNAM, LAO CAI PROVINCE, Bakalin, v-1-126-16.
Liverwort oil body diversity in Pacific Asia

Cladopodiella fluitans (Nees) H. Buch
Fig. 488: Oil bodies 2–4 per cell, spherical, 4–6 μm in diameter, oblong 4–5×5–10 μm, granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-57-2-18.

Cladopodiella francisci (Hook.) Jřrg.
Fig. 489: Oil bodies 2–4 per cell, spherical, 3–5 μm in diameter, oblong 3–5×4–6 μm, granulate, some with large central eye – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-44-4-19.

Nowellia curvifolia (Dicks.) Mitt.
Fig. 490: Small putative oil bodies >20 per cell, spherical, 0.5 μm in diameter, smooth – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-80-9-19.

Odontoschisma denudatum (Mart.) Dumort.
Fig. 491: Oil bodies 5–6(–7) per cell, spherical, 4–6 μm in diameter, oblong 6–14×4–6 μm, loosely granulate – CHINA, GUIZHOU PROVINCE, Bakalin, china-56-25-13.

Fig. 492: Oil bodies 2–5 per cell, spherical, 4–7 μm in diameter, oblong 8–14×4–7 μm, granulate – JAPAN, TOTTORI PREFECTURE, Bakalin, j-1-5-13.

Fig. 493: Oil bodies 2–5 per cell, spherical, 4–5 μm in diameter, oblong 5–10×4–5 μm, finely granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-79-14-19.

Fig. 494: Oil bodies (2–)3–4 per cell, spherical, (4–)5–7 μm in diameter, oblong 5–14×4–5(–6) μm, finely granulate – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-30-7-20.

Odontoschisma elongatum (Lindb.) A.Evans
Fig. 495: Oil bodies 2–3 per cell, spherical, 6–8 μm in diameter, oblong 8–15×7–10 μm, finely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-70-17-15.

Fig. 496: Oil bodies 2(–4) per cell, spherical, 6–8 μm in diameter, oblong 8–18×6–10 μm, finely granulate, brownish – RUSSIA, KAMCHATKA TERRITORY, Klimova, kam-75-85-16.
Odontoschisma grosseverrucosum Steph.

Fig. 497: Oil bodies in leaf margin 2–4 per cell, spherical, 3–4 μm in diameter, oblong 4–8×3–4 μm, finely granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-15-5-20.

Fig. 498: Oil bodies 2(–3) per cell, spherical, 4–5 μm in diameter, oblong 5–8(–12)×4–5 μm, finely granulate – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-21-6-19.

Fig. 499: Oil bodies 2(–3) per cell, rarely spherical, 4(–5) μm in diameter, oblong 5–13×4–5(–6) μm, finely granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-23-29-20.

Odontoschisma macounii (Austin) Underw.

Fig. 500: Oil bodies 2–3 per cell, spherical, 8–13 μm in diameter, oblong 10–16×8–11 μm, granulate to coarsely so – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-66-16-15.

Fig. 501: Oil bodies 2–5(–6) per cell, spherical, 7–10 μm in diameter, oblong 8–14×7–10 μm, coarsely granulate – RUS-SIA, SAKHALIN PROVINCE, Bakalin, s-18-17-17.

Fig. 502: Oil bodies 2–3(–4) per cell, spherical, 7–12 μm in diameter, oblong 9–15×9–10 μm, coarsely granulate, brownish – RUSSIA, KRASNOYARSK TERRITORY, Fedosov, vf51a.

Odontoschisma pseudogrosseverrucosum Gradst., S.C. Aranda et Vanderp.

Fig. 503: Oil bodies 2–3 per cell, oblong 7–12×5–6(–7) μm, finely granulate – REPUBLIC OF KOREA, GANGWON-DO, Bakalin, kor-66-5-19.

Fig. 504: Oil bodies 2–4 per cell, spherical, (2–)3–4 μm in diameter, oblong 5–8×3–4 μm, finely granulate – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-91-40-15.

Schiffneria hyalina Steph.

Fig. 505: Small putative oil bodies 10–40 and more per cell, spherical, 0.5–1.0 μm in diameter, smooth – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-7-10-19.
Liverwort oil body diversity in Pacific Asia

Cephaloziellaceae

Cephaloziella crispata N. Kitag.
Fig. 506: Oil bodies 2–5 per cell, spherical, 1–4 μm in diameter, oblong 3–5×2–4 μm, finely granulate to smooth, with several additional Small putative oil bodies – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-18-4-19.

Comment: Cephaloziopsis exigua (Inoue) R.M. Schust. & Inoue. represents the form of Cephaloziella crispata with undeveloped perianth (Katagiri & Furuki, 2012).

Cephaloziella divaricata (Sm.) Schiffn.
Fig. 507: Oil bodies 2–4 per cell, spherical, 2–4 μm in diameter, oblong 2–4×3–5 μm, nearly smooth – RUSSIA, Khabarovsk Territory, Bakalin & Klimova, kh-49-22-19.

Cephaloziella konstantinovae Mamontov & Vilnet
Fig. 508: Oil bodies 3–7 per cell, spherical, 1.5–2 μm in diameter, oblong 1–2×2–3 μm, smooth – RUSSIA, Khabarovsk Territory, Bakalin, kh-11-11-16.

Cephaloziella microphylla (Steph.) Douin
Fig. 509: Oil bodies 1–2 per cell, spherical, 1.5–2 μm in diameter, oblong 2–2.5×1.5–2 μm, smooth – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-21-16a-20.

Cephaloziella spinicaulis Douin
Fig. 510: Oil bodies 2–6 per cell, spherical, 1.5–2.5 μm in diameter, nearly smooth – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-71-2-19.

Fig. 511: Oil bodies 2–6 per cell, spherical, 2–3 μm in diameter, oblong 2–3×3–5 μm, nearly smooth – RUSSIA, Primorsky Territory, Bakalin, p-31-3-15.

Cephaloziella spinigera (Lindb.) Jřrg
Fig. 512: Oil bodies 2–5 per cell, spherical, 1.5–2 μm in diameter, oblong 2–3×1.5–2 μm, smooth – RUSSIA, Krasnoyarsk Territory, Fedosov, Vy39a.

Cephaloziella willistiana (Steph.) N. Kitag.
Fig. 513: Oil bodies 2–4 per cell, spherical, 2–3 μm in diameter, oblong 2–3×2–4 μm, smooth – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-11-1-19.

Fig. 514: Oil bodies (1–)3–5 per cell, spherical, 1.5–2 μm in diameter, oblong 2–2.5×1.5–2 μm, smooth – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-21-21-20.

Comment: this species actually belongs to Cylindrocolea, and replaces Cylindrocolea kiaerii in East Asia. However, we refrain from suggesting new combinations right now.
Cylindrocolea aff. kiaeri (Austin) Váňa
Fig. 515: Oil bodies 1–3 per cell, spherical, (1.5–)2–3 μm in diameter, oblong 2–4×1.5–2.5 μm, nearly smooth – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-72-3-19.

Fig. 516: Oil bodies (1–)2–5 per cell, spherical, 204 μm in diameter, oblong 2–4×2–3 μm, smooth – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-4-2-17.

Fig. 517: Oil bodies 2–6 per cell, spherical, 1.5–2 μm in diameter, oblong 1.5–2×2–3 μm, smooth – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-4-16-17.

Comment: all reports of C. kiaerii in East Asia may belong to Cephaloziella willisiana (see above), a neglected species, likely of the Cylindrocolea.

Cylindrocolea recurvifolia (Steph.) Inoue
Fig. 518: Oil bodies (1–)2–4 per cell, spherical, 1.5–2 μm in diameter, oblong 1.5–2×2–4 μm, smoothy to granulate – REPUBLIC OF KOREA, GYEONGSANGNAM-DO, Bakalin, kor-70-13-19.

Obtusifoliaceae

Obtsusifolium obtusum (Lindb.) S.W.Arnell
Fig. 520: Oil bodies 15–20 per cell, spherical, 3–4(–5) μm in diameter, oblong 4–6×3–4 μm, botryoidal – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-21-34-14.

Fig. 521: Oil bodies 12–22 per cell, spherical, 3–4 μm in diameter, oblong 4–6×3–4 μm, botryoidal – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-21-34-14_2.

Scapaniaceae

Diplophyllum alboans (L.) Dumort.
Fig. 522: Oil bodies in vitta cells 15–20 per cell, spherical, 2–3 μm in diameter, oblong 2–4×2–3 μm, granulate – JAPAN, KOCHI PREFECTURE, Bakalin, j-8-9-15.

Diplophyllum andrewsi A.Evans
Fig. 523: Oil bodies 3–8 per cell, spherical, 3–4 μm in diameter, oblong 4–5×3–4 μm, smooth to granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-70-44-15.
Liverwort oil body diversity in Pacific Asia

Diplophyllum andrewsii A.Evans

Fig. 524: Oil bodies 2–3 per cell, spherical, 3–5 μm in diameter, oblong 4–7×3–5 μm, nearly smooth, mostly with central eye – REPUBLIC OF KOREA, GYEONGSANGNAM-DO, Bakalin, kor-17-3-15.

Diplophyllum nanum Herzog

Fig. 525: Oil bodies 3–8 per cell, spherical, 4–7 μm in diameter, oblong 4–10×4–6 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin, v-1-114-16.

Fig. 526: Oil bodies (3–)5–9 per cell, spherical, 3–6 μm in diameter, oblong 5–8×4–5(–6) μm, finely granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-25-14-20.

Diplophyllum sibiricum Vilnet & Bakalin

Fig. 527: Oil bodies 3–6 per cell, spherical, 4–6 μm in diameter, oblong 5–8×4–6 μm, granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-28-3-16.

Fig. 528: Oil bodies 2–6 per cell, spherical, 4–6 μm in diameter, oblong 4–8×4–6 μm, smooth to loosely granulate – RUSSIA, MAGADAN PROVINCE, Bakalin & Fedosov

Diplophyllum taxifolium (Wahlenb.) Dumort.

Fig. 529: Oil bodies 4–7 per cell, spherical, 3–5 μm in diameter, oblong 4–6×3–5 μm, loosely granulate – JAPAN, TOTTORI PREFECTURE, Bakalin, j-1-10-13.

Fig. 530: Oil bodies 3–12 per cell, spherical, 4–6 μm in diameter, oblong 5–8×4–5 μm, loosely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-9-26-17.

Douinia plicata (Lindb.) Konstant. et Vilnet

Fig. 531: Oil bodies 10–15 per cell, spherical, 5–6 μm in diameter, oblong 5–10×4–6 μm, granulate to finely so – REPUBLIC OF KOREA, GANGWON-DO, Bakalin, kor-66-9-19.

Protochilopsis grandiretis (Lindb. ex Kaal.) A.V. Troitsky, Bakalin & Fedosov

Fig. 532: Oil bodies 8–20 per cell, spherical, 5–8 μm in diameter, oblong 6–10×(4–)5–7(–9) μm, botryoidal – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-21-1-14.
Pseudotritomaria heterophylla (R.M.Schust.) Konstant. et Vilnet

Fig. 533: Oil bodies 3–5 per cell, spherical, 5–7 μm in diameter, oblong 5–10(–12)×4–8 μm, finely granulate, brownish – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-29-5-14.

Fig. 534: Oil bodies 4–8 per cell, spherical, 3–7 μm in diameter, oblong 5–10×4–6 μm, granulate, brownish – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-30-3-14.

Fig. 535: Oil bodies (2–)4–7 per cell, spherical, 5–8 μm in diameter, oblong 6–11×5–8 μm, granulate – RUSSIA, Krasnoyarsk Territory, Fedosov, vf65b.

Saccobasis polita (Nees) H.Buch

Fig. 536: Oil bodies 4–7(–8) per cell, spherical, 5–9(–10) μm in diameter, oblong 5–12×3–8(–8) μm, granulate – RUSSIA, MURMANSK PROVINCE, Bakalin, mur-33-20-15.

Scapania ampliata Steph.

Fig. 537: Oil bodies 2–3(–4) per cell, spherical, (3–)4–5(–6) μm in diameter, oblong 5–8×4–5 μm, finely granulate – RE-

Scapania apiculata Spruce

Fig. 538: Oil bodies (3–)4–6 per cell, spherical, 5–8 μm in diameter, oblong 6–10×5–6–7 μm, finely granulate – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-38-1-17.

Scapania bhutanensis Amakawa

Fig. 539: Oil bodies 3–5 per cell, spherical, 5–7 μm in diameter, oblong 6–10×5–6 μm, finely granulate to nearly smooth – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-41-1-17.

Scapania bolanderi Austin

Fig. 540: Oil bodies 2–4(–7) per cell, oblong 5–12(–15)×4–7 μm, finely granulate, biconcave – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-88-18-15.

Scapania carinthiaca J.B.Jack ex Lindb.

Fig. 541: Oil bodies 3–5 per cell, spherical, (3–)4–5 μm in diameter, oblong 5–7(–10)×(3–)4–5 μm, finely granulate – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-88-55-15.
Scapania carinthiaca J.B.Jack ex Lindb.
Fig. 542: Oil bodies 3–5 per cell, spherical, (2–)3–4 μm in diameter, oblong 3–5×2–3(–4) μm, finely granulate – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-34-19-14.

Scapania ciliata Sande Lac.
Fig. 543: Oil bodies 3–5 per cell, spherical, 5–7 μm in diameter, nearly smooth – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-91-39-15.

Fig. 544: Oil bodies 2–4 per cell, spherical, 3–7 μm in diameter, oblong 6–11×5–7 μm, finely granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-81-2-19.

Fig. 545: Oil bodies 3–5 per cell, spherical, 5–8(–10) μm in diameter, oblong 6–10×5–7 μm, finely granulate – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-21-8-19.

Fig. 546: Oil bodies 5–9 per cell, spherical, 4–7 μm in diameter, oblong 5–7×4–5 μm, granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-28-5-20.

Scapania ciliatospinosa Horik.
Fig. 547: Oil bodies 2–6 per cell, spherical, (3–)4–5 μm in diameter, oblong 4–6(–8)×3–4(–5) μm, nearly smooth, biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-73-35-18.

Fig. 548: Oil bodies (2–)3–4(–5) per cell, spherical, 3–5 μm in diameter, oblong 4–7×3–4 μm, finely granulate, some biconcave – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-23-28-20.

Fig. 549: Oil bodies 2–4 per cell, spherical, 3–5 μm in diameter, oblong 4–8×(2–)3–5 μm, finely granulate, some biconcave – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-24-13-20-8.

Scapania contorta Mitt.
Fig. 550: Oil bodies 2–3 per cell, spherical, 4–8 μm in diameter, oblong 6–12(–15)×5–6(–7) μm, nearly smooth – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-9-12-17.
Scapania crassiretis Bryhn

Fig. 551: Oil bodies 3–8 per cell, spherical, 6–10 μm in diameter, oblong 6–12(–15)×5–8(–13) μm, granulate – RUSSIA, Khabarovsk Territory, Bakalin & Klimova, kh-39-7-19.

Scapania curta (Mart.) Dumort.

Fig. 552: Oil bodies (5–)6–10 per cell, spherical, (4–)5–6 μm in diameter, oblong 5–8(–10)×4–6 μm, coarsely granulate – RUSSIA, Sakhalin Province, Bakalin, k-81-4-13.

Fig. 553: Oil bodies 3–6 per cell, spherical, 4–6(–7) μm in diameter, oblong 5–9×4–5 μm, granulate – RUSSIA, Murmansk Province, Bakalin, mur-32-8-15.

Scapania cuspiduligera (Nees) Müll.Frib.

Fig. 554: Oil bodies 2–3 per cell, spherical, 6–9 μm in diameter, oblong 7–11(–13)×(5–)6–8 μm, nearly smooth, biconcave – CHINA, Yunnan Province, Bakalin, c-83-11-18.

Fig. 555: Oil bodies 2–3 per cell, spherical, 5–8 μm in diameter, oblong 8–12(–15)×5–8(–12) μm, granulate, brownish – RUSSIA, Kamchatka Territory, Klimova, kam-53-77-16.

Scapania davidii Potemkin

Fig. 556: Oil bodies 2–4 per cell, spherical, 4–6 μm in diameter, oblong 5–10(–12)×4–5 μm, finely granulate – CHINA, Yunnan Province, Bakalin, c-83-31a-18.

Scapania degenii Schiffn. ex Müll.Frib.

Fig. 557: Oil bodies (2–)3–5(–7) per cell, spherical, (6–)8–12 μm in diameter, oblong 8–14(–16)×6–8(–10) μm, granulate, brownish – RUSSIA, Khabarovsk Territory, Bakalin & Klimova, kh-38-11-19.

Fig. 558: Oil bodies 4–7(–10) per cell, spherical, 5–10 μm in diameter, oblong 6–13×5–10 μm, granulate, brownish – RUSSIA, Khabarovsk Territory, Bakalin & Klimova, kh-41-10-19.

Fig. 559: Oil bodies 3–5 per cell, spherical, 5–7 μm in diameter, oblong 6–12×5–8 μm, finely granulate – RUSSIA, Krasnoyarsk Territory, Fedosov, vf52a.
Scapania diplophyloides Amakawa et S.Hatt.
Fig. 560: Oil bodies (4–)5–6(–7) per cell, spherical, 5–7 μm in diameter, oblong 5–12×4–6 μm, granulate – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-89-27-15.
Fig. 561: Oil bodies (2–)4–7 per cell, spherical, 5–8(–9) μm in diameter, granulate, brownish – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-46-1-18.

Scapania ferruginea (Lehm. et Lindemb.) Leh. et Lindemb.
Fig. 562: Oil bodies 8–13 per cell, spherical, 3–5 μm in diameter, oblong 4–5(–6)×3–4(–5) μm, granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-88-8-18.

Scapania gigantea Horik.
Fig. 563: Oil bodies in basal part of the ventral lobe 3–7(–10) per cell, spherical, 5–10 μm in diameter, finely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-23-1-18.
Fig. 564: Oil bodies in upper part of the ventral lobe 2–3 per cell, spherical, 4–8 μm in diameter, oblong 7–8×6–7 μm, granulate to finely so – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-23-1-18.

Scapania griffithii Schiffn.
Fig. 565: Oil bodies (2–)3–5 per cell, spherical, 3–5 μm in diameter, oblong 4–7×3–4 μm, finely granulate – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-35-1-17.

Scapania gymnostomophila Kaal.
Fig. 566: Oil bodies 1 per cell, spherical, (6–)8–17 μm in diameter, oblong 10–18×8–14 μm, granulate, brownish, sometimes biconcave – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-56-22-19.
Fig. 567: Oil bodies 1(–2) per cell, spherical, (7–)9–16(–18) μm in diameter, oblong 9–18×7–16 μm, granulate, brownish, sometimes biconcave – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-31-6-14.
Fig. 568: Oil bodies 1(–2) per cell, spherical, 8–12(–16) μm in diameter, oblong 9–18×8–13 μm, granulate, brownish, sometimes biconcave – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-46-13-16.
Scapania harae Amakawa

Fig. 569: Oil bodies 4–5(–6) per cell, spherical, 5–7 μm in diameter, oblong 5–10×4–5 μm, finely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-83-8-18.

Scapania hians Steph. ex Müll.Frib.

Fig. 570: Oil bodies (2–)3–4(–5) per cell, spherical, 4–6 μm in diameter, oblong 5–10×4–5 μm, finely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-81-31a-18.

Scapania hirosakensis Steph. ex Müll.Frib.

Fig. 571: Oil bodies (1–)3–6(–7) per cell, spherical, 4–6 μm in diameter, oblong 5–12×4–6 μm, granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-44-22-18.

Fig. 572: Oil bodies 3–6(–7) per cell, spherical, (3–)4–6 μm in diameter, oblong 5–8×4–5 μm, granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, s-43-22-16.

Scapania hyperborea Jřrg.

Fig. 573: Oil bodies 4–6 per cell, spherical, 3–6 μm in diameter, oblong 5–11×4–5 μm, finely granulate – RUSSIA, KAMCHATKA TERRITORY, Klimova, kam-68-17-16.

Scapania integerrima Steph.

Fig. 574: Oil bodies (2–)3–5 per cell, spherical, (3–)4–5 μm in diameter, oblong 4–7(–8)×3–5 μm, granulate – REPUBLIC OF KOREA, GYEONGSANGNAM-DO, Bakalin, kor-70-6-19.

Scapania irrigua (Nees) Nees

Fig. 575: Oil bodies 3–5 per cell, spherical, 3–5 μm in diameter, oblong 4–10×3–5(–7) μm, granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-45-1-19.

Fig. 576: Oil bodies (3–)4–6 per cell, spherical, 3–5(–6) μm in diameter, oblong 5–8(–10)×3–4 μm, Bakalin & Klimova, kh-53-8-19.

Scapania karl-muelleri Grolle

Fig. 577: Oil bodies 3–4 per cell, spherical, 5–8 μm in diameter, oblong 5–8×4–6 μm, nearly smooth, biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-83-18-18.
Scapania kaurinii Ryan
Fig. 578: Oil bodies 2–3–4 per cell, spherical, 3–5 μm in diameter, oblong 4–7(–9)×3–5(–7) μm, granulate – RUSSIA, KAMCHATKA TERRITORY, Klimova, kam-58-37-16.

Fig. 579: Oil bodies 4–6–10 per cell, spherical, 4–8 μm in diameter, oblong 6–10×4–6 μm, finely granulate – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-25-35-14.

Scapania ligulata Steph.
Fig. 580: Oil bodies 3–4 per cell, spherical, 3–5 μm in diameter, oblong 4–7×3–4 μm, finely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-76-1-18.

Fig. 581: Oil bodies 3–4 per cell, spherical, 4–6(–8) μm in diameter, oblong 5–9×4–6 μm, finely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-9-18-17.

Scapania magadanica S.S.Choi, Bakalin et B.Y.Sun
Fig. 582: Oil bodies 3–8(–9) per cell, spherical, 4–6(–7) μm in diameter, oblong 5–7×4–5 μm, finely granulate – RUS- SIA, KAMCHATKA TERRITORY, Klimova, kam-62-4-16.

Scapania maxima Horik
Fig. 583: Oil bodies 2–4 per cell, spherical, 7–10 μm in diameter, oblong 7–20×6–8(–10) μm, finely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-88-4-18.12.

Scapania metahimalayana Vilnet & Bakalin
Fig. 584: Oil bodies 3–7 per cell, spherical, 3–4 μm in diameter, oblong 4–7×3–5 μm, nearly smooth – CHINA, YUNNAN PROVINCE, Bakalin, c-88-60-18.

Fig. 585: Oil bodies (2–)3–4 per cell, spherical, 4–6 μm in diameter, oblong 5–8×4–6 μm, granulate to finely so – VIET- NAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-10-12-19.

Fig. 586: Oil bodies 4–6 per cell, spherical, 4–5(–6) μm in diameter, oblong 5–9×4–5 μm, finely granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-21-19-20.
Scapania metahimalayana Vilnet & Bakalin

Fig. 587: Oil bodies 3–5 per cell, spherical, 4–5 μm in diameter, oblong 5–11×4–5(–6) μm, granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-25-4-20.

Scapania mucronata H.Buch

Fig. 588: Oil bodies (3–)5–8 per cell, spherical, 5–9 μm in diameter, oblong 6–10×5–7 μm, finely granulate, slightly brownish – RUSSIA, Khabarovsk Territory, Bakalin, kh-29-2-16.

Fig. 589: Oil bodies 3–5 per cell, spherical, 5–7 μm in diameter, oblong 5–10(–11)×4–6 μm, finely granulate, biconcave – RUSSIA, Khabarovsk Territory, Bakalin & Klimova, kh-56-6-19.

Scapania obtusata (Berggr.) S.W.Arnell

Fig. 590: Oil bodies (3–)4–6 per cell, spherical, (2–)4–5 μm in diameter, oblong 5–10(–12)×4–5 μm, finely granulate – RUSSIA, Magadan Province, Bakalin, mag-25-21-14.

Scapania orientalis Steph. ex Müll.Frib.

Fig. 591: Oil bodies 12–19 per cell, spherical, 3–5 μm in diameter, oblong 4–7×3–4 μm, finely granulate, some with central eye – CHINA, YUNNAN PROVINCE, Bakalin, c-88-75-18.

Scapania ornithopoides (With.) Waddell

Fig. 592: Oil bodies 2–3 per cell, spherical, 5–7 μm in diameter, oblong 6–10×5–7 μm, very finely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-73-10-18.

Fig. 593: Oil bodies 2–3 per cell, spherical, 5–8 μm in diameter, oblong 8–12×5–7 μm, very finely granulate to nearly smooth – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-3-11-19.

Scapania paludicola Loeske et Müll.Frib.

Fig. 594: Oil bodies (5–)8–19 per cell, spherical, 4–6(–10) μm in diameter, oblong 5–8(–10)×4–6 μm, granulate – RUSSIA, Khabarovsk Territory, Bakalin & Klimova, kh-45-1a-19.

Scapania paludosa (Müll.Frib.) Müll.Frib.

Fig. 595: Oil bodies 3–7 per cell, spherical, 4–6 μm in diameter, oblong 5–7(–8)×(3–)4–5(–6) μm, finely granulate – RUSSIA, Murmansk Province, Bakalin, mur-34-6-15.
Scapania parvidens Steph.

Fig. 596: Oil bodies 2–3 per cell, spherical, 2–5 μm in diameter, oblong 3–5×2–3 μm, finely granulate – Japan, Yamanashi Prefecture, Bakalin, j-87-11-15.

Fig. 597: Oil bodies 2–3 per cell, spherical, 2–3(–5) μm in diameter, oblong 3–4(–5)×2–3(–4) μm, finely granulate – Japan, Yamanashi Prefecture, Bakalin, j-87-51-15.

Scapania parvifolia Warnst.

Fig. 598: Oil bodies 4–5 per cell, spherical, 6–7 μm in diameter, oblong 6–13×4–15(–7–8) μm, granulate to finely so – Russia, Sakhalin Province, Borovichev, Be-242-15.

Fig. 599: Oil bodies (2–)3–5 per cell, spherical, 5–8 μm in diameter, oblong 6–12×4(–5)×8(–10) μm, finely granulate, sometimes biconcave – Russia, Khabarovsk Territory, Bakalin & Klimova, kh-33-9-19.

Scapania parvitexta Steph.

Fig. 600: Oil bodies 2–3 per cell, spherical, 5–8 μm in diameter, oblong 5–12(–14)×(3–)4–7(–9) μm, finely granulate, sometimes biconcave – Russia, Sakhalin Province, Bakalin, k-78-27-15.

Fig. 601: Oil bodies 2–3(–5) per cell, spherical, 4–7 μm in diameter, oblong 4–8×3–6 μm, finely granulate, some biconcave – Republic of Korea, Jeollabuk-do, Bakalin, kor-73-4-19.

Fig. 602: Oil bodies 2–3(–4) per cell, spherical, 4–7(–8) μm in diameter, oblong 5–10×3(–)4–6 μm, finely granulate, some biconcave – Republic of Korea, Jeollabuk-do, Bakalin, kor-73-9-19.

Fig. 603: Oil bodies 2–3(–4) per cell, spherical, (3–)4–6 μm in diameter, oblong 4–8×3–5 μm, finely granulate – Russia, Primorsky Territory, Klimova, prim-111-19-17.

Fig. 604: Oil bodies 2–4 per cell, spherical, 2–5(–6) μm in diameter, oblong 3–8(–11)×2–4(–7) μm, finely granulate – Vietnam, Lao Cai Province, Bakalin, v-2-29-16.
Scapania parvitexta Steph.

Fig. 605: Oil bodies (2–)3–4 per cell, spherical, (3–)4–5 μm in diameter, oblong 5–8×3–4(–5) μm, finely granulate, some biconcave – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-27-6-20.

Scapania praetervisa Meyl.

Fig. 606: Oil bodies 3–5 per cell, spherical, 3–5 μm in diameter, oblong 4–7×3–5 μm, granulate – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-48-14-15.

Fig. 607: Oil bodies (2–)5–7 per cell, spherical, 4–8 μm in diameter, oblong 5–10×4–6(–8) μm, granulate – RUSSIA, PRIMORSKY TERRITORY, Klimova, prim-61-4-17.

Scapania pseudojavanica Vilnet & Bakalin

Fig. 608: Oil bodies (2–)4–10 per cell, spherical, 4–6 μm in diameter, oblong 5–9(–12)×4–6(–8) μm, finely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-12-12-19.

Fig. 609: Oil bodies (0–)2–5 per cell, spherical, 3–5 μm in diameter, oblong 5–8(–10)×3–4(–6) μm, finely granulate, some with very small eye – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-17-4-20.

Scapania rufidula Warnst.

Fig. 610: Oil bodies (1–)3–5(–7) per cell, spherical, (2–)3–4(–5) μm in diameter, oblong 4–5×(2–)3–4 μm, finely granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-26-1-16.

Fig. 611: Oil bodies (5–)7–10(–13) per cell, spherical, 3–5 μm in diameter, oblong 4–6×3–4 μm, finely granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-35-4-19.

Scapania secunda Steph.

Fig. 612: Oil bodies 2(–3) per cell, rarely spherical, 2–6 μm in diameter, smooth, commonly oblong 5–12(–14)×4–6 μm, finely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-83-32-18.

Fig. 613: Oil bodies 2–3 per cell, rarely spherical, 4–5 μm in diameter, oblong 5–12×4–6 μm, finely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-83-32-18.
Scapania simmonsii Bryhn et Kaal.
Fig. 614: Oil bodies 3–5 per cell, spherical, 5–6 μm in diameter, oblong 5–10×4–5(–7) μm, finely granulate, with numerous Small putative oil bodies 1–2 μm in diameter, nearly smooth-surfaced – RUSSIA, KRASNOYARSK TERRITORY, Fedosov, v60.

Scapania sinikkae Potemkin
Fig. 615: Oil bodies 7–13(–17) per cell, spherical, 4–5 μm in diameter, oblong 4–6(–7)×3–5 μm, nearly smooth, commonly biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-86-6-18.

Scapania sphaerifera H.Buch et Tuom.
Fig. 616: Oil bodies 3–5 per cell, spherical, (3–)4–5 μm in diameter, oblong 4–5–6(–7)×3–4(–5) μm, finely granulate – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-35-39-14.

Scapania spitsbergensis (Lindb.) Müll.Frib.
Fig. 617: Oil bodies 2–3–4(–5) per cell, spherical, (4–)5–7 μm in diameter, oblong 5–10×4–6(–7) μm, granulate – RUSSIA, KAMCHATKA TERRITORY, Klimova, kam-62-28-16.

Scapania subalpina (Nees ex Lindenb.) Dumort.
Fig. 618: Oil bodies (2–)3–4 per cell, spherical, 4–6(–8) μm in diameter, oblong 5–8(–11)×4–5(–6) μm, granulate – RUSSIA, KRASNOYARSK TERRITORY, Fedosov, v61b.

Scapania subalpina (Nees ex Lindenb.) Dumort.
Fig. 619: Oil bodies 4–7(–10) per cell, spherical, (2–)3–4 μm in diameter, oblong 4–6×3–4 μm, finely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-35-20-18.

Scapania tundracea (Arnell) H.Buch
Fig. 620: Oil bodies 2–5 per cell, spherical, 5–6 μm in diameter, oblong 6–8×5–6 μm, granulate, brownish – RUSSIA, KRASNOYARSK TERRITORY, Fedosov, n20.

Scapania uliginosa (Lindb.) Dumort.
Fig. 621: Oil bodies (2–)3–4(–5) per cell, oblong 6–9(–10)×3–5 μm, granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-70-15-15.

Scapania uliginosa (Lindb.) Dumort.
Fig. 622: Oil bodies (2–)3–4(–5) per cell, spherical, 5–7 μm in diameter, oblong (5–)6–10×4–6(–8) μm, granulate – RUSSIA, MURMANSK PROVINCE, Bakalin, mur-34-8-15.
Scapania undulata (L.) Dumort.
Fig. 623: Oil bodies 3–7 per cell, spherical, 4–7(–10) μm in diameter, rarely oblong 8–10×7–9 μm, granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-70-30-15.
Fig. 624: Oil bodies (3–)5–9 per cell, spherical, (4–)5–7 μm in diameter, oblong 7–10(–12)×4–7 μm, granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-73-6-19.

Scapania verrucosa Heeg
Fig. 625: Oil bodies (2–)3–4 per cell, spherical, 3–5 μm in diameter, oblong 4–7(–8)×3–5 μm, finely granulate – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-35-7-17.
Fig. 626: Oil bodies (2–)3–5 per cell, spherical, 3–5 μm in diameter, oblong 4–8(–11)×3–5 μm, finely granulate – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-36-8-14.

Schistochilopsis boliviensis (Steph.) Bakalin & Fedosov
Fig. 627: Oil bodies 13–28(–30) per cell, spherical, (2–)3–4(–5) μm in diameter, oblong 4–6(–7)×3–4 μm, nearly smooth, sometimes biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-82-8-18.

Schistochilopsis cornuta (Steph.) Konstant.
Fig. 628: Oil bodies 15–40 per cell, spherical, (2–)3–4 μm in diameter, oblong 3–5(–6)×(2–)3–4 μm, granulate to finely so, sometimes biconcave – RUSSIA, PRIMORSKY TERRITORY, Klimova, prim-99-12a-17.

Schistochilopsis incisa (Schrad.) Konstant.
Fig. 629: Oil bodies 14–25(–35) per cell, spherical, (2–)2–3 μm in diameter, oblong 3–5×2–3(–4) μm, nearly smooth – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-32-9-14.

Schistochilopsis setosa (Mitt.) Konstant.
Fig. 630: Oil bodies 15–25 per cell, spherical, 3–5 μm in diameter, oblong 4–5(–6)×2–4 μm, smooth to granulate, sometimes biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-83-24-18.
Fig. 631: Oil bodies 15–26 per cell, spherical, 3–5(–6) μm in diameter, oblong 4–6(–8)×3–4(–5) μm, finely granulate, sometimes biconcave – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-6-3-19.
Liverwort oil body diversity in Pacific Asia

Lophozia

Lophoziaceae

Heterogemma laxa (Lindb.) Konstant. et Vilnet
Fig. 632: Oil bodies 9–12 per cell, spherical, 4–6 μm in diameter, oblong 5–7×4–6 μm, botryoidal to segmented – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-57-8-18.

Lophozia ascendens (Warnst.) R.M.Schust.
Fig. 633: Oil bodies 10–20 per cell, spherical, 3–6 μm in diameter, oblong 6–8×12×4–5(6) μm, granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-12-18-16.

Fig. 634: Oil bodies 5–9(10) per cell, spherical, 4–6 μm in diameter, oblong 6–12×4–8 μm, granulate, brownish – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-29-10-17.

Lophozia faurieana Steph.
Fig. 635: Oil bodies 7–9 per cell, spherical, 6–7 μm in diameter, oblong 6–12×4–6 μm, granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-34-41-18.

Lophozia guttulata (Lindb. et Arnell) A.Evans
Fig. 636: Oil bodies 6–10 per cell, spherical, 4–6 μm in diameter, oblong 7–12×4–6 μm, granulate – RUSSIA, KAMCHATKA TERRITORY, Bakalin & Klimova, kh-46-6-19.

Lophozia heteromorpha R.M. Schust. & Damsh.
Fig. 637: Oil bodies 3–6 per cell, spherical, 4–6 μm in diameter, oblong 5–10×3–5 μm, granulate – RUSSIA, KAMCHATKA TERRITORY, Klimova, kam-68-36-16.

Lophozia lantratoviae Bakalin
Fig. 638: Oil bodies 7–10 per cell, spherical, 5–9 μm in diameter, oblong 7–10×3–5 μm, finely granulate, biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-83-37-18.

Fig. 639: Oil bodies 5–8(10) per cell, spherical, 5–6 μm in diameter, oblong 5–10×3–5 μm, finely granulate, mostly biconcentric – RUSSIA, KAMCHATKA TERRITORY, Bakalin, kh-18-12-16.

Lophozia longiflora (Nees) Schiffn.
Fig. 640: Oil bodies 8–18 per cell, spherical, 3–5 μm in diameter, oblong 5–12×3–5 μm, granulate – RUSSIA, KAMCHATKA TERRITORY, Klimova, kam-75-81-16.
Lophozia longiflora (Nees) Schiffn.
Fig. 641: Oil bodies 7–15 per cell, spherical, 4–8 μm in diameter, oblong 6–12×4–6(7) μm, granulate – RUSSIA, Khabarovsk Territory, Bakalin, kh-17-28-16.

Lophozia murmanica Kaal.
Fig. 642: Oil bodies 5–9 per cell, spherical, 4–6 μm in diameter, oblong 5–12×4–6 μm, finely granulate – RUSSIA, Murmansk Province, Bakalin, mur-32-43-15.

Lophozia pallida (Steph.) Grolle
Fig. 643: Oil bodies 9–15(20) per cell, spherical, 4–9 μm in diameter, oblong 7–12×5–8 μm, granulate, brownish – CHINA, Yunnan Province, Bakalin, c-83-7-18.

Lophozia savicziae Schljakov
Fig. 644: Oil bodies 18–40 per cell, spherical, 2–4(–5) μm in diameter, oblong 4–6×2–4 μm, granulate to smooth, biconcentric – RUSSIA, Kamchatka Territory, Bakalin, k-50-7-15.

Fig. 645: Oil bodies 8–15 (18) per cell, spherical, 2–3 μm in diameter, oblong 3–5×2–3 μm, coarsely granulate, biconcentric – RUSSIA, Magadan Province, Bakalin, mag-26-6-14.

Fig. 646: Oil bodies 11–22 per cell, spherical, 3–7 μm in diameter, oblong 4–7×3–6 μm, granulate, biconcentric – RUSSIA, Murmansk Province, Bakalin, mur-34-2-15.

Fig. 647: Oil bodies 10–20 per cell, spherical, 4–6 μm in diameter, oblong 4–8×3–6 μm, granulate, biconcentric – RUSSIA, Sakhalin Province, Bakalin, s-27-20-17.

Comment: L. savicziae from Sakhalin (S-27-20-17) shows larger oil bodies than common and the identification may be questioned.

Lophozia schusteriana Schljakov
Fig. 648: Oil bodies 8–12 per cell, spherical, 4–7 μm in diameter, oblong (5)7–10×4–6 μm, granulate, some biconcentric – RUSSIA, Magadan Province, Bakalin, mag-31-12-14.

Lophozia silvicola H.Buch
Fig. 649: Oil bodies 15–30 per cell, spherical, 3–4 μm in diameter, oblong 4–5×3–4 μm, granulate, mostly biconcentric – RUSSIA, Sakhalin Province, Bakalin & Klimova, k-34-41-18.
Liverwort oil body diversity in Pacific Asia

Lophozia silvicola H.Buch
Fig. 650: Oil bodies 10–20 per cell, spherical, (2–)3–4 μm in diameter, oblong 3–5×2–3 μm, granulate, mostly biconcentric – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-47-4-19.

Lophozia silvicoloidea N.Kitag.
Fig. 651: Oil bodies 14–20(28) per cell, spherical, (3)4–7 μm in diameter, oblong 5–10×4–6 μm, granulate, biconcentric – JAPAN, YAMANASHI PREFECTURE, Bukalin, y-85-2a-15.

Fig. 652: Oil bodies 10–18(24) per cell, spherical, 3–5 μm in diameter, oblong 4–7×3–5 μm, granulate, biconcentric – RUSSIA, KHABAROVSK TERRITORY, Bukalin, kh-25-21-16.

Lophozia ventricosa (Dicks.) Dumort.
Fig. 653: Oil bodies 11–14(16) per cell, spherical, 4–7 μm in diameter, oblong 6–10×3–5 μm, granulate – RUSSIA, KAMCHATKA TERRITORY, Bukalin, k-50-3-15.

Fig. 654: Oil bodies 7–15 per cell, spherical, 4–8 μm in diameter, oblong (6)7–10×4–6 μm, granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-46-15-19.

Lophozia ventricosa var. rigida R.M. Schust.
Fig. 655: Oil bodies 4–7 per cell, spherical, 4–6 μm in diameter, oblong 5–10×4–6 μm, granulate – RUSSIA, MURMANSK PROVINCE, Bukalin, mur-32-51-15.

Lophozia ventricosa var. rigida R.M. Schust.
Fig. 656: Oil bodies 4–7 per cell, spherical, 4–6 μm in diameter, oblong (5)7–12×4–6 μm, granulate – RUSSIA, KRASNOYARSK TERRITORY, Fedosov, vf51b.

Lophozia excisa (Dicks.) Konstant. et Vilnet
Fig. 657: Oil bodies 12–20 per cell, spherical, 4–6 μm in diameter, oblong 5–10×4–6 μm, granulate – CHINA, YUNNAN PROVINCE, Bukalin & Klimova, c-37-2-17.

Fig. 658: Oil bodies 12–20 per cell, spherical, 3–5 μm in diameter, oblong 4–7×3–4 μm, granulate – CHINA, YUNNAN PROVINCE, Bukalin, c-85-34-18.
Lophoziopsis excisa (Dicks.) Konstant. et Vilnet
Fig. 659: Oil bodies 5–12(14) per cell, spherical, 3–4 μm in diameter, oblong 3–5×2–4 μm, granulate – RUSSIA, Khabarovsk Territory, Bakalin, kh-16-6-16.

Lophoziopsis longidens (Lindb.) Konstant. et Vilnet
Fig. 660: Oil bodies 6–13(15) per cell, spherical, 3–5 μm in diameter, oblong 5–8×3–6 μm, granulate – RUSSIA, Khabarovsk Territory, Bakalin & Klimova, kh-36-4-19.

Lophoziopsis pellucida (R.M.Schust.) Konstant. et Vilnet
Fig. 661: Oil bodies 7–14 per cell, spherical, 3–5 μm in diameter, oblong 5–8×3–6 μm, granulate – RUSSIA, Magadan Province, Bakalin, mag-31-28-14.

Fig. 662: Oil bodies 7–15 per cell, spherical, 3–5 μm in diameter; granulate to coarsely so – RUSSIA, Sakhalin Province, Bakalin, s-26-4-17.

Lophoziopsis polaris var. sphagnorum (R.M.Schust.) Konstant. et Vilnet
Fig. 663: Oil bodies 6–15 per cell, spherical, 3–5 μm in diameter, oblong 5–8×3–5 μm, botryoidal – RUSSIA, Sakhalin Province, Bakalin, mag-25-3-14.

Fig. 664: Oil bodies (7)10–14(16) per cell, spherical, 4–5 μm in diameter, oblong 5–7×3–5 μm, botryoidal – RUSSIA, Khabarovsk Territory, Bakalin, kh-25-19-16.

Lophoziopsis propagulifera (Gottsche) Konstant. et Vilnet
Fig. 665: Oil bodies 12–20 per cell, spherical, 4–5 μm in diameter, oblong 5–8×3–5 μm, granulate – CHINA, Sichuan Province, Bakalin & Klimova, c-35-17-17.

Anastrophyllaceae
Anastrophylla orcadensis (Hook.) Schiffn
Fig. 666: Oil bodies 6–12 per cell, spherical, 3–4 μm in diameter, oblong, 3–5×4–6 μm, coarsely granulate – CHINA, Sichuan Province, Bakalin & Klimova, c-38-13-17.

Anastrophyllum assimile (Mitt.) Steph.
Fig. 667: Oil bodies 3–6 per cell, spherical, 3–4 μm in diameter, oblong 3–5×2–4 μm, finely granulate to nearly smooth – REPUBLIC OF KOREA, Gyeongsangnam-do, Bakalin, kor-25-18-15.
Anastrophyllum assimile (Mitt.) Steph.
Fig. 668: Oil bodies 3–6 per cell, spherical, 3–5 μm in diameter, oblong 3–5×5–8 μm, granulate – RUSSIA, PRIMORSKY TERRITORY, Klimova, prim-109-10-17.

Anastrophyllum lignicola D.B.Schill et D.G.Long
Fig. 669: Oil bodies 2–5 per cell, spherical, 3–4 μm in diameter, oblong 2.5–4×3–5 μm, granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-83-24h-18.

Anastrophyllum michauxii (F.Weber) H.Buch
Fig. 670: Oil bodies 3–10 per cell, spherical, 4–5 μm in diameter, oblong 3–5×4–9 μm, granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-55-16-19.

Barbilophozia barbata (Schmidel ex Schreb.) Loeske
Fig. 671: Oil bodies 4–9 per cell, spherical, 3–5 μm in diameter, oblong 3–5×4–7 μm, granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-35-11-19.

Barbilophozia hatcheri (A.Evans) Loeske
Fig. 672: Oil bodies 5–10 per cell, spherical, 3–6 μm in diameter, oblong, 3–6×5–12 μm, granulate – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-23-6-14.

Barbilophozia lycopodioides (Wallr.) Loeske
Fig. 673: Oil bodies 4–12 per cell, spherical, 3–7 μm in diameter, oblong, 3–5×4–7 μm, granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-19-7-17.

Biantheridion undulifolium (Nees) Konstant. et Vilnet
Fig. 674: Oil bodies 3–8 per cell, spherical, 3–6 μm in diameter, oblong, 4–6×5–10 μm, granulate, grayish – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-42-7-13.

Crossoalyx hellerianus (Nees ex Lindenb.) Meyl.
Fig. 675: Oil bodies 3–8 per cell, spherical, 3–5 μm in diameter, oblong 2–5×4–7 μm, granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-38-16-18.

Gymnoecaella inflata (Huds.) Dumort.
Fig. 676: Oil bodies 4–8 per cell, spherical, 4–6 μm in diameter, oblong 6–9×4–5 μm, finely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-57-3-18.
Gymnocolea marginata (Steph.) S. Hatt.

Fig. 677. – Oil bodies 4–9 per cell, spherical, 4–6 μm in diameter, oblong 6–7×4–6 μm, finely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-25-5-18.

Comment: the relationships of this taxon with **G. inflata** are poorly known, now we prefer to maintain the species status for **G. marginata**, until molecular studies will not clarify this issue.

Isopaches bicrenatus (Schmiedel ex Hoffm.) H.Buch

Fig. 678: Oil bodies 4–7 per cell, spherical, 4–7 μm in diameter, oblong 6–10×4–6 μm, granulate – RUSSIA, KHAZAROVSK TERRITORY, Bakalin & Klimova, kh-42-1-19.

Fig. 679: Oil bodies 7–8(9) per cell, spherical, 4–6 μm in diameter, oblong 4–7×4–5 μm, finely granulate – RUSSIA, KHAZAROVSK TERRITORY, Klimova, khab-152-2-19.

Isopaches decolorans (Limpr.) H.Buch

Fig. 680: Oil bodies 5–6 per cell, spherical, 4–7 μm in diameter, oblong 6–9×4–7 μm, finely granulate, biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-85-2-18.

Neoorthocaulis attenuatus (Mart.) L.Söderstr., De Roo et Hedd.

Fig. 681: Oil bodies 3–4(–7) per cell, spherical, (4–)5–8 μm in diameter, oblong 8–13×6–8 μm, granulate – RUSSIA, KHAZAROVSK TERRITORY, Bakalin, kh-22-18-16.

Fig. 682: Oil bodies 6–8(–10) per cell, spherical, (2–)3–5 μm in diameter, oblong 3–5(–6)×(2–)3–4 μm, finely granulate to more or less smooth – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-31-22-15.

Neoorthocaulis binsteadii (Kaal.) L.Söderstr., De Roo et Hedd.

Fig. 683: Oil bodies 4–6 per cell, spherical, 4–6 μm in diameter, oblong 5–7×4–5 μm, coarsely granulate – RUSSIA, KHAZAROVSK TERRITORY, Bakalin & Klimova, kh-38-5-19.

Fig. 684: Oil bodies 3–4 per cell, spherical, 4–5(–6) μm in diameter, oblong 5–8×4–5 μm, coarsely granulate to botryoidal – RUSSIA, MURMANSK PROVINCE, Bakalin, mur-32-56-15.

Neoorthocaulis floerkei (F.Weber et D.Mohr) L.Söderstr., De Roo et Hedd.

Fig. 685: Oil bodies 4–6 per cell, spherical, 4–5(–6) μm in diameter, oblong 5–10×4–5 μm, granulate – RUSSIA, MURMANSK PROVINCE, Bakalin, mur-32-24-15.
Liverwort oil body diversity in Pacific Asia

Plicanthus birmensis (Steph.) R.M.Schust.
Fig. 686: Oil bodies 3–5 per cell, spherical, (2–)3–5 μm in diameter, oblong 3–5×(2–)3–4 μm, loosely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin, v-3-56-16.
Fig. 687: Oil bodies 2–4 per cell, spherical, 3–4 μm in diameter, oblong 4–6×3–4 μm, loosely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-5-1-17.

Fig. 688: Oil bodies 4–6 per cell, spherical, 3–4 μm in diameter, oblong 3–6×(2–)3–4 μm, merely smooth – CHINA, YUNNAN PROVINCE, Bakalin, c-81-11-18.

Pseudolophozia debiliformis (R.M. Schust. & Damsh.) Konstant. & Vilnet
Fig. 689: Oil bodies 4–7 per cell, spherical, 4–6×(5–8) μm in diameter, oblong 5–10×4–6 μm, granulate – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-49-5-15.
Fig. 690: Oil bodies 7–12 per cell, spherical, 3–4 μm in diameter, oblong 3–6(–7)×2–4 μm, finely granulate to smooth – VIETNAM, LANG SON PROVINCE, Bakalin, mag-26-16-14.

Schljakovia kunzeana (Huebener) Konstant. et Vilnet
Fig. 691: Oil bodies 4–7(–9) per cell, spherical, (3–)4–6(–8) μm in diameter, oblong 5–10×4–6 μm, finely granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-23-6-16.

Schizophyllopsis bidens (Reinw., Blume et Nees) Váňa et L.Söderstr.
Fig. 692: Oil bodies 2–4 per cell, spherical, 3–4(–5) μm in diameter, oblong 4–10×3–4 μm, finely granulate to smooth – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-31-39-20.

Pseudolophozia sudetica (Nees ex Huebener) Konstant. & Vilnet
Fig. 693: Oil bodies 3–6 per cell, spherical, 3–5 μm in diameter, oblong 3–5×4–8 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin, v-3-94a-16.

Schljakovia kunzeana (Huebener) Konstant. et Vilnet
Fig. 694: Oil bodies 3–4–6 per cell, spherical, (3–)4–5(–8) μm in diameter, oblong 4–8(–14)×3–5 μm, finely granulate, sometimes biconcave – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-44-12-19.
Schljakovianthus quadrilobus (Lindb.) Konstant. et Vilnet
Fig. 695: Oil bodies 2–5(–6) per cell, spherical, 4–6 μm in diameter, oblong (4–)5–7(–10)×3–5(–7) μm, finely granulate – RUSSIA, KAMCHATKA TERRITORY, Klimova, kam-80-50-16.

Fig. 696: Oil bodies 3–7–10) per cell, spherical, (3–)4–7(–9) μm in diameter, oblong 5–8(–10)×4–6(–8) μm, granulate to finely so – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-18-15-17.

Sphenolobopsis pearsonii (Spruce) R.M. Schust.
Fig. 697: Oil bodies 4–8 per cell, spherical, 2–2.5 μm in diameter, oblong 2–3×1.5–2 μm, smooth – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-23-4-16.

Fig. 698: Oil bodies 3–4(–5) per cell, spherical, (2–)3–4 μm in diameter, oblong 4–5×3–4 μm, smooth – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-11-19-17.

Sphenolobus cavifolius (H. Buch & S.W. Arnell) Müll. Frib.
Fig. 699: Oil bodies (3–)4–7 per cell, spherical, 4–5 μm in diameter, oblong 5–8(–10)×4–6 μm, coarsely granulate – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-29-13-14.

Sphenolobus minutus (Schreb. ex D.Crantz) Berggr.
Fig. 700: Oil bodies 4–6 per cell, spherical, 3–5 μm in diameter, oblong 4–7(–10)×3–4(–5) μm, coarsely granulate – RUSSIA, Krasnoyarsk Territory, Fedosov, vf42.

Fig. 701: Oil bodies 3–4(–5) per cell additionally with 1–several smooth small putative oil bodies 1–2 μm in diameter, spherical, 3–5(–6) μm in diameter, coarsely granulate to botryoidal – RUSSIA, Krasnoyarsk Territory, Fedosov, vf70b.

Tetralophozia filiformis (Steph.) Urmi
Fig. 702: Oil bodies 2–5(–8) per cell, spherical, (2–)3–4 μm in diameter, rarely oblong 4–5×3–4 μm, botryoidal to nearly smooth – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-39-1-17.

Fig. 703: Oil bodies (1–)2–5 per cell, spherical, 1.5–3.0 μm in diameter, oblong 3–4×2–3 μm, coarsely granulate – REPUBLIC OF KOREA, JUJOLLABUK-DO, Bakalin, kor-75-4-19.
Tetralophozia setiformis (Ehrh.) Schljakov
Fig. 704: Oil bodies (2–)3–6 per cell, spherical, (2–)3–4(–5) μm in diameter, coarsely granulate to botryoidal – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-21-1-16.

Trilophozia quinquedentata (Huds.) Bakalin
Fig. 705: Oil bodies 5–11 per cell, spherical, 4–7 μm in diameter, rarely oblong 6–10×5–7 μm, coarsely granulate – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-28-13-14.

Tritomaria exsecta (Schmidel) Schiffn. ex Loeske
Fig. 706: Oil bodies (1–)3–8 per cell, spherical, 3–4 μm in diameter, rarely oblong 4–5(–6)×3–4 μm, granulate to finely so – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-39-3-17.

Tritomaria koreana Bakalin, S.S.Choi et B.Y.Sun
Fig. 707: Oil bodies (3–)4–9 per cell, spherical, 4–5 μm in diameter, oblong 4–8(–10)×2–3–5(–6) μm, granulate, 30% with eye – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-87-13-15.

Fig. 708: Oil bodies (4–)9–17 per cell, spherical, 3–5(–7) μm in diameter, oblong 5–9×3–4 μm, granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-75-15-19.

Tritomaria scitula (Taylor) Jřrg.
Fig. 709: Oil bodies 4–9 per cell, spherical, 3–7 μm in diameter, oblong 4–8(–10)×3–4(–5) μm, finely granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-50-32-19.

Vietnamiella epiphytica Bakalin & Vînêt
Fig. 710: Oil bodies (2–)3–7 per cell, spherical, 2.5–4(–5) μm in diameter, oblong 3–4(–6)×2.5–3.5(–5) μm, nearly smooth – VIETNAM, LÂI CHÂU PROVINCE, Bakalin & Kîlimova, v-8-18-19.

Fig. 711: Oil bodies 2–5 per cell, spherical, (2.5–)3–4 μm in diameter, nearly smooth – VIETNAM, LÂO CÂI PROVINCE, Bakalin & Kîlimova, v-9-8-17.

Myliaceae

Mylia anomala (Hook.) Gray
Fig. 712: Oil bodies 5–16 per cell, spherical, (5–)7–12 μm in diameter, oblong 7–18×6–10 μm, botryoidal – RUSSIA, SAKHALIN PROVINCE, Bakalin & Kîlimova, k-57-11-18.
Fig. 713: Oil bodies 7–23 per cell, spherical, 5–10 μm in diameter, oblong 8–15×5–10 μm, botryoidal – RUSSIA, Khabarovsk Territory, Bakalin & Klimova, kh-44-3-19.

Fig. 714: Oil bodies 8–12(14) per cell, spherical, 6–10 μm in diameter, oblong 8–18×6–10 μm, botryoidal – RUSSIA, Sakhalin Province, Bakalin, s-27-23-17.

Mylia taylorii (Hook.) Gray

Fig. 715: Oil bodies 6–10 per cell, spherical, 7–12 μm in diameter, oblong 12–17×8–10 μm, coarsely granulate – RUSSIA, Magadan Province, Bakalin, mag-24-1-14.

Mylia verrucosa Lindb.

Fig. 716: Oil bodies 5–10 per cell, spherical, 7–10 μm in diameter, oblong 10–25×7–10 μm, coarsely granulate – RUSSIA, Primorsky Territory, Bakalin, p-35-20-14.

Mylia vietnamica Bakalin & Vilnet

Fig. 717: Oil bodies 11–25 per cell, spherical, 7–13 μm in diameter, oblong 10–20×8–13 μm, botryoidal to coarsely granulate – CHINA, Yunnan Province, Bakalin, c-83-30-18.

Fig. 718: Oil bodies 5–8(10) per cell, spherical, 7–13 μm in diameter, oblong 10–20×8–14 μm – VIETNAM, Lao Cai Province, Bakalin, v-3-19-16.

Comment: Oil bodies of *M. vietnamica* in specimen from China differs from those in specimens from type locality in Vietnam although genetically the plants of the Chinese and Vietnamese populations are quite similar (Ellis et al., 2019).

Balantiopsidaceae

Isotachis japonica Steph.

Fig. 720: Oil bodies 2(–3) per cell, oblong 6–12(14)×4–5(6) μm, loosely granulate – VIETNAM, Lao Cai Province, Bakalin, v-2-144-16.

Fig. 721: Oil bodies 2(–3) per cell, spherical, 4–7 μm in diameter, oblong 6–9×5–7 μm, coarsely granulate – VIETNAM, Lao Cai Province, Bakalin, v-2-93-16.
Acrobolbaceae

Acrobolbus ciliatus (Mitt.) Schiffn.

Fig. 722: Oil bodies (2–)5–8 per cell, spherical, 6–10 μm in diameter, oblong 10–20(–25)×6–10 μm, finely granulate, brown – REPUBLIC OF KOREA, GANGWON-DO, Bakalin, kor-73-8a-19.

Fig. 723: Oil bodies 7–14 per cell, spherical, 7–9 μm in diameter, oblong 7–9×9–15 μm, finely granulate, brown – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-4-16-19.

Conoscyphus trapezoides (Sande Lac.) Schiffn.

Fig. 724: Oil bodies 2(–3) per cell, oblong 12–18×5–10 μm, granulate, grayish brownish – INDONESIA, JAVA ISLAND, Bakalin, java-3-42-15.

Fig. 725: Oil bodies 2 per cell, oblong 18–30×10–18 μm, granulate to coarsely so, brownish – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-31-26-20.

Fig. 726: Oil bodies in underleaves 2 per cell, spherical, 8–10 μm in diameter, oblong 8–16×(5–)6–8 μm, granulate – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-31-26-20.

Comment: Leaf cell size in *C. trapezoides* is varying in available materials: the cell size in Vietnamese materials is strongly larger than in Javanese one.

Saccogynidium muricellum (De Not.) Grolle

Fig. 727: Oil bodies 6–14 per cell, oblong 5–20×3–4 μm, finely granulate – CHINA, GUIZHOU PROVINCE, Bakalin, china-56-91-13.

Fig. 728: Oil bodies 5–12 per cell, rarely spherical, 5–6 μm in diameter, oblong 7–20×4–5 μm, granulate – INDONESIA, JAVA ISLAND, Bakalin, java-3-7-15.

Saccogynidium rigidulum

Fig. 729: Oil bodies 5–8 per cell, rarely spherical, 6–7 μm in diameter, oblong 8–12×5–7 μm, granulate, brownish – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-30-12-20.

Arnelliaceae

Arnelliia fennica (Gottsche) Lindb.

Fig. 730: Oil bodies 4–7 per cell, spherical, 4–6 μm in diameter, oblong, 3–6×5–12 μm, botryoidal to roughly segmented – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-31-29-14.
Arnellia fennica (Gottsche) Lindb.
Fig. 731: Oil bodies 2–7 per cell, spherical, 3–5 μm in diameter, oblong, 3–5×6–9 μm, smooth to segmented – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-22-20-17.

Southbyaceae
Gongylanthus himalayensis Grolle
Fig. 732: Oil bodies 2–5 per cell, spherical, 5–8 μm in diameter, oblong 5–13×(3–)4–6 μm, finely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-75-23-18.

Southbya grollei N. Kitag.
Fig. 733: Oil bodies 5–8 per cell, oblong 6–10(–14)×2–4(–10) μm, very finely granulate to nearly smooth, some biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-79-1-18.

Jackiellaceae
Jackiella javanica Schiffn.
Fig. 734: Oil bodies 1(–2) per cell, spherical, 7–10 μm in diameter, oblong 13–22×8–13 μm, coarsely granulate, with 1–several eyes (due to deterioration?) – CHINA, GUIZHOU PROVINCE, Bakalin, china-55-48-13.

Fig. 735: Oil bodies 2–3(4) per cell, oblong 10–20×5–10 μm, coarsely granulate – INDONESIA, JAVA ISLAND, Bakalin, java-3-73a-15.

Fig. 736: Oil bodies 2–3(–4) per cell, spherical, 7–10 μm in diameter, oblong 10–20×6–8 μm, granulate, brownish – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-1-3-19.

Fig. 737: Oil bodies 2(–3) per cell, oblong 6–16×5–6 μm, granulate to finely so – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-23-6-20.

Comment: J. javanica includes four specimens collected from Guizhou Province of China in the North to Java Island in Indonesia in the South. The variability in oil bodies may imply the genetic differences too.

Calypogeiaceae
Calypogeia aeruginosa Mitt.
Fig. 738: Oil bodies 1–2 per cell, spherical, 3–6 μm in diameter, oblong 4–7×6–10 μm, granulate, grayish blue – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-11-12-17.

Fig. 739: Oil bodies 2–3 per cell, spherical, 4–6 μm in diameter, oblong 4–6×6–13 μm, coarsely granulate, blue-violet – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-8-37-17.
Calypogeia aeruginosa Mitt.

Fig. 740: Oil bodies 1–2 per cell, spherical, 4–6 μm in diameter, oblong, 4–7×6–13 μm, granulate, brownish purple – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-8-42-17.

Calypogeia angusta Steph.

Fig. 741: Oil bodies (2–)3–4 per cell, spherical, 4–5 μm in diameter, oblong, 4–5×5–10 μm, coarsely granulate – CHINA, GUIZHOU PROVINCE, Bakalin, china 55-19-13.

Calypogeia apiculata (Steph.) Steph.

Fig. 742: Oil bodies 3–7 per cell, spherical, 4–6 μm in diameter, oblong 4–6×6–10 μm, coarsely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-2-3-18.

Fig. 743: Oil bodies 2–5 per cell, spherical, 4–6 μm in diameter, oblong 4–6×6–11 μm, coarsely granulate – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-15-5-19.

Calypogeia arguta Nees et Mont.

Fig. 744: Oil bodies 2–3 per cell, oblong, 5–7×7–12 μm, granulate, grayish – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-3-14-17.

Calypogeia arguta Nees et Mont.

Fig. 745: Oil bodies 0–3 per cell, spherical, 4–5 μm in diameter, oblong 6–10×4–5 μm, coarsely granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-71-8-19-3.

Fig. 746: Oil bodies in the apex of the leaf 2–4 per cell, spherical, 4–5 μm in diameter, oblong 5-10×4–5 μm, coarsely granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-71-8-19-6.

Fig. 747: Oil bodies 0–3 per cell, rarely spherical, 4–5 μm in diameter, oblong 5–10×4–7 μm, granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-11-36-20.

Fig. 748: Oil bodies 0–2 per cell, rarely spherical, 4–5 μm in diameter, oblong 7–12×4–5(–6) μm, granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-2-2-20.

Comment: C. arguta is morphologically malleable species (varying in leaf cell wall thickness, leaf cell size, oilbodies' surface features). The morphological variability may be associated with genetic differences – the supposition we could not test in the course of the present study.
Calypogeia cuspidata (Steph.) Steph.

Fig. 749: Oil bodies (0–)4–7 per cell, spherical, 4–5(–6) μm in diameter, oblong 5–8×4–5 μm, coarsely granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-23-13-20_3.

Fig. 750: Oil bodies 0–8 per cell, spherical, 4–5 μm in diameter, oblong 6–10(–13)×4–5 μm, coarsely granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-23-13-20_13.

Calypogeia granulata Inoue

Fig. 751: Oil bodies 2–4 per cell, spherical, 3–5 μm in diameter, oblong 4–6×6–13 μm, granulate, brownish – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-3-4-19.

Fig. 752: Oil bodies 2–4 per cell, spherical, 3–5 μm in diameter, oblong 4–7×6–14 μm, granulate, brownish – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-8-4-19.

Fig. 753: Oil bodies 2–3 per cell, spherical, 4–6 μm in diameter, oblong, 4–6×6–10 μm, granulate, brownish – CHINA, GUIZHOU PROVINCE, Bakalin, china-56-19-13.

Fig. 754: Oil bodies 2(–3) per cell, oblong 6–12(–14)×5–6 μm, finely granulate, blue – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-11-3-20.

Fig. 755: Oil bodies 2(–3) per cell, oblong 5–12(–14)×4–5 μm, finely granulate, blue grayish – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-31-2-20.

Calypogeia integristipula Steph.

Fig. 756: Oil bodies 3–6 per cell, rarely spherical, 3–5 μm in diameter, commonly oblong 3–7×6–12 μm, botryoidal – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-47-18-19.

Fig. 757: Oil bodies 5–10 per cell, spherical, 4–5 μm in diameter, oblong, 3–5×5–10 μm, botryoidal – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-33-5-14.
Calypogeia japonica Steph.
Fig. 758: Oil bodies 2–5 per cell, spherical, 5–8 μm in diameter, oblong, 6–10×8–15 μm, granulate, biconcentric, grayish – JAPAN, TOTTORI PREFECTURE, Bakalin, j-1-15-13.

Calypogeia muelleriana (Schiffn.) Müll.Frib.
Fig. 759: Oil bodies 3–5 per cell, spherical, 5–6 μm in diameter, oblong, 4–7×6–22 μm, granulate, biconcentric, grayish – VIETNAM, LAO CAI PROVINCE, Bakalin, v-4-22-16.

Calypogeia muelleriana (Schiffn.) Müll.Frib.
Fig. 760: Oil bodies 4–9 per cell, spherical, 4–6 μm in diameter, oblong 4–6×6–12 μm, segmented to botryoidal – RUSSIA, Khabarovsk Territory, Bakalin & Klimova, kh-43-11-19.

Calypogeia neesiana (C.Massal. et Carestia) Müll.Frib.
Fig. 763: Oil bodies 2–4 per cell, rarely spherical, 4–5 μm in diameter, oblong, 3–6×6–12 μm, botryoidal – RUSSIA, SAKHALIN PROVINCE, Klimova, sakh-10-4-16.

Calypogeia neesiana subsp. subalpina (Inoue) Inoue
Fig. 764: Oil bodies 2–3 per cell, rarely spherical, 4–6 μm in diameter, oblong, 4–6×5–12 μm, botryoidal – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-87-1-15.

Calypogeia neogaea (R.M. Schust.) Bakalin
Fig. 765: Oil bodies 2–5 per cell, spherical, 4–6 μm in diameter, oblong, 4–6×6–10 μm, botryoidal – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-63-4-15.

Calypogeia neogaea (R.M. Schust.) Bakalin
Fig. 766: Oil bodies 6–13 per cell, spherical, 3–5 μm in diameter, oblong 3–5×5–10 μm, botryoidal – RUSSIA, Khabarovsk Territory, Bakalin & Klimova, kh-36-7-19.
Calypogeia orientalis Buczk. & Bakalin

Fig. 767: Oil bodies 2–3 per cell, spherical, 4–6 μm in diameter, oblong, 4–6×6–13 μm, botryoidal, blue – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-77-20-15.

Fig. 768: Oil bodies 2(–4) per cell, spherical, 5–6 μm in diameter, oblong 5–11×4–6 μm, botryoidal, blue – REPUBLIC OF KOREA, GYEONGSANGNAM-DO, Bakalin, kor-28-1-15.

Fig. 769: Oil bodies 0–2 per cell, spherical, 5–6 μm in diameter, oblong 5–12×3–4–5 μm, botryoidal, blue – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-75-8-19.

Calypogeia sinensis Bakalin & Buczk.

Fig. 770: Oil bodies 2–4 per cell, spherical, 5–6 μm in diameter, oblong 4–6×6–14 μm, coarsely granulate, deep blue – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-21-26-19.

Fig. 771: Oil bodies 2–4 per cell, spherical, 5–7 μm in diameter, oblong 4–7×7–14 μm, coarsely granulate, deep blue – VIETNAM, SON LA PROVINCE, Bakalin & Klimova, v-24-12-19.

Fig. 772: Oil bodies 2–3(–4) per cell, oblong 5–17×4–6(–8) μm, coarsely granulate, blue – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-23-13-20_14.

Fig. 773: Oil bodies 0–2(–3) per cell, oblong 6–10×3–4–5 μm, coarsely granulate, blue – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-23-13-20_14.

Fig. 774: Oil bodies (0–)2–3 per cell, spherical, 5(–6) μm in diameter, oblong 5–10×(–12)×4–5(–6) μm, coarsely granulate, blue – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-23-13-20_21.

Fig. 775: Oil bodies 2–4 per cell, spherical, 4–5 μm in diameter, oblong 5–10×3–5 μm, coarsely granulate, blue – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-24-10-20.
Calypogeia sinensis Bakalin & Bucz.
Fig. 776: Oil bodies 2–4 per cell, spherical, 5–6 μm in diameter, oblong 6–17×5–6 μm, coarsely granulate, blue – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-5-2-20.

Calypogeia sphagnicola (Arnell et J.Perss.) Warnst. et Loeske
Fig. 777: Oil bodies 3–10 per cell, spherical, 2–5 μm in diameter, oblong, 2–4×4–8 μm, botryoidal – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-28-28-14.

Calypogeia suecica (Arnell et J.Perss.) Müll.Frib.
Fig. 778: Oil bodies 3–8 per cell, spherical, 3–6 μm in diameter, oblong 3–6×6–8 μm, segmented to botryoidal – RUSSIA, KHAABAROVSK TERRITORY, Bakalin & Klimova, kh-55-10h-19.

Calypogeia tosana (Steph.) Steph.
Fig. 779: Oil bodies 4–8 per cell, spherical, 4–6 μm in diameter, oblong 4–6×6–15(–20) μm, botryoidal – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-16-2-19.

Fig. 780: Oil bodies 2–5 per cell, spherical, 4–5 μm in diameter, oblong 6–14×4–5 μm, botryoidal – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-73-16-19.

Fig. 781: Oil bodies 5–7 per cell, spherical, 5–6 μm in diameter, oblong 5–10(–12)×4–5 μm, botryoidal – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-23-16-20. 2.

Fig. 782: Oil bodies (0–)4–8 per cell, spherical, 5–7 μm in diameter, oblong 7–15×5–7 μm, botryoidal – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-23-16-20. 9.

Fig. 783: Oil bodies 15–22 per cell, spherical, 5–6 μm in diameter, oblong 6–12×5–6 μm, botryoidal to coarsely granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-23-2-20.

Fig. 784: Oil bodies 5–8 per cell, spherical, 4–6 μm in diameter, oblong, 4–8×6–12 μm, botryoidal – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-3-73-17.

Comment: The strong variation was observed within ‘morphological species’ C. tosana, where oil bodies varying in number, size and surface features.
Calypogeia vietnamica Bakalin & Vilnet
Fig. 785: Oil bodies 2–5 per cell, spherical, 3–5 μm in diameter, oblong, 3–5×5–12 μm, finely granulate, grayish – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-9-23-17.

Calypogeia yoshinagana Steph.
Fig. 786: Oil bodies 1–5 per cell, spherical, 3–5 μm in diameter, oblong 6–13×3–5 μm, botryoidal – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-72-5-19.
Fig. 787: Oil bodies 2–6 per cell, oblong 6–14×3–5 μm, botryoidal – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-79-1-19.

Eocalypogeia schusterana (S.Hatt. et Mizut.) R.M.Schust.
Fig. 788: Oil bodies 3–6 per cell, spherical, 6–11 μm in diameter, oblong 8–18×6–10 μm, granulate, brownish – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-50-16-19.
Fig. 789: Oil bodies 6–11 per cell, spherical, 4–9 μm in diameter, oblong 6–18×4–8 μm, granulate, brownish – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-22-13-17.

Comment: The populations of E. schusteriana from the southern extremes of the species area (Sakhalin Island) are characterized by somewhat larger cells and more numerous oil bodies, it may imply that another taxon is in hand.

Metacalypogeia alternifolia (Nees) Grolle
Fig. 790: Oil bodies 5–9(12) per cell, spherical, 4–6 μm in diameter, oblong 5–8(10)×4–5 μm, finely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-5-57-17.

Metacalypogeia cordifolia (Steph.) Inoue
Fig. 791: Oil bodies 8–16 per cell, spherical, 5–8 μm in diameter, oblong 6–10×5–7 μm, granulate, brownish – JAPAN, KOKI PREFECTURE, Bakalin, j-9-5-15.
Fig. 792: Oil bodies 4–16–16 per cell, spherical, 3–7 μm in diameter, oblong 4–8×3–5 μm, finely granulate, sometimes biconcetric – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-54-1-19.

Mnioloma fuscum (Lehm.) R.M.Schust.
Fig. 793: Oil bodies 5–10(11) per cell, spherical, 5–7 μm in diameter, oblong 7–18×5–7 μm, finely granulate – CHINA, GUIZHOU PROVINCE, Bakalin, china-56-98-13.
Mnioloma fuscum (Lehm.) R.M.Schust.
Fig. 794: Oil bodies 6–10(11) per cell, spherical, 4–6 μm in diameter, oblong 6–10×4–6 μm, granulate, brownish – VIETNAM, LÃO CAI PROVINCE, Bakalin, v-2-107-16.

Delavayellaceae

Delavayella serrata Steph.
Fig. 795: Oil bodies 6–11 per cell, spherical, 4–6 μm in diameter, oblong 5–13×4–6 μm, granulate – VIETNAM, LÃO CAI PROVINCE, Bakalin & Klimova, v-5-30-17.
Fig. 796: Oil bodies 9–22 per cell, spherical, 4–6 μm in diameter, oblong 4–10×3–5 μm, granulate – VIETNAM, LÂI CHÂU PROVINCE, Bakalin & Klimova, v-8-16-19.

Liochlaena sichuanaica Bakalin & Vilnit
Fig. 797: Oil bodies 5–10 per cell, oblong 6–16×6–8 μm, finely granulate – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-40-10-17.
Fig. 798: Oil bodies 7–12 per cell, oblong 6–14×5–8 μm, granulate, brownish – CHINA, YUNNAN PROVINCE, Bakalin, c-76-5-18.
Fig. 799: Oil bodies 7–13(16) per cell, spherical, 5–8 μm in diameter, oblong 7–14×5–7 μm, granulate – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-39-5-17.
Fig. 800: Oil bodies 6–12 per cell, spherical, 5–7 μm in diameter, oblong 8–17×5–7 μm, finely granulate, brownish – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-24-12-20.

Liochlaena subulata (A.Evans) Schljakov
Fig. 801: Oil bodies 6–12 per cell, spherical, 4–7 μm in diameter, oblong 7–10×5–6 μm, granulate – RUSSIA, AMUR PROVINCE, Bakalin, am-69-10-18.

Xenochila integrifolia (Mitt.) Inoue
Fig. 802: Oil bodies 12–20 per cell, spherical, 3–4 μm in diameter, oblong 4–7×3–4 μm, granulate – JAPAN, KOCHI PREFECTURE, Bakalin, j-10-28-15.
Notoscyphaceae

Notoscyphus lutescens (Lehm. et Lindenb.) Mitt.

Fig. 803: Oil bodies (3–)4–5 per cell, spherical, 8–10 μm in diameter, oblong 10–20(–24)×8–13 μm, granulate, brownish – INDONESIA, JAVA ISLAND, Bakalin, java-3-65-15.

Fig. 804: Oil bodies 2(–3) per cell, oblong 10–18×8–13 μm, granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin, v-1-8-16.

Fig. 805: Oil bodies 2(–3) per cell, oblong 14–28×9–12 μm, granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin, v-4-11-16.

Fig. 806: Oil bodies 1 per cell, oblong 11–24×8–10 μm, granulate, with 1–several eyes – VIETNAM, LANG SON PROVINCE, Bakalin & Klimova, v-33-5-20.

Jungermanniaceae

Eremotus myriocarpus (Carrington) Lindb. et Kaal. ex Pearson

Fig. 807: Oil bodies absent in unspecialized cells, ocelli up to 16 per leaf, spherical, 7 μm in diameter, oblong 8–11×5–7 μm, nearly smooth, biconcave – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-48-16-15.

Fig. 808: Oil bodies 5–7 per cell, spherical, 2–4 μm in diameter, smooth; ocelli 1–10 per leaf, spherical 8–10 μm in diameter, oblong 8–12×5–8 μm, smooth, sometimes biconcave – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-56-12-19.

Jungermannia afoininae Mamontov, Konstant. & Vilnet

Fig. 809: Oil bodies 5–8 per cell, spherical, 4–6 μm in diameter, oblong 5–7×3–5 μm, finely granulate, sometimes biconcave – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-49-1-19.

Jungermannia atrovirens Dumort.

Fig. 810: Oil bodies 2–3(6) per cell, spherical, 5–7 μm in diameter, oblong 7–12(14)×5–7 μm, granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-29-13-17.

Fig. 811: Oil bodies 3–5 per cell, spherical, 4–8 μm in diameter, oblong 6–12×5–7 μm, granulate – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-42-4-17.
Jungermannia atrovirens Dumort.

Fig. 812: Oil bodies 2(–4) per cell, spherical, 6–8 μm in diameter, oblong 7–14(–16)×(5–)6–8(–10) μm, granulate to finely so – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-73-7-19.

Jungermannia borealis Damsh. et Váňa

Fig. 813: Oil bodies 4–7(9) per cell, spherical, 4–6 μm in diameter, oblong 5–13×4–8 μm, finely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-46-1-16.

Jungermannia exsertifolia Steph.

Fig. 814: Oil bodies 2–6(10) per cell, spherical, 4–6 μm in diameter, oblong 7–10(13)×5–6(7) μm, granulate – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-55-6-15.

Fig. 815: Oil bodies 2–6 per cell, spherical, (6)7–9 μm in diameter, oblong 7–15×5–8 μm, granulate – JAPAN, KOCHI PREFECTURE, Bakalin, j-11-36-15.

Fig. 816: Oil bodies 2–5 per cell, spherical, 4–7 μm in diameter, oblong 6–14×5–8 μm, finely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-27-2-17.

Jungermannia konstantinovae Bakalin et Vilnet

Fig. 817: Oil bodies 2–4 per cell, spherical, 5–7 μm in diameter, oblong 7–13×5–6 μm, finely granulate to nearly smooth – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-9-2-16.

Mesoptychia badensis (Gottsche ex Rabenh.) L.Söderstr. et Váňa

Fig. 818: Oil bodies 3–5(–6) per cell, spherical, 5–6 μm in diameter, oblong 5–14×4–7 μm, finely granulate – RUSSIA, Khabarovsk TERRITORY, Bakalin & Klimova, kh-57-6-19.

Fig. 819: Oil bodies 5–7 per cell, spherical, 4–7 μm in diameter, oblong 5–10×4–5 μm, finely granulate, brownish – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-32-7-14.

Mesoptychia chinensis Bakalin, Vilnet et Y.X. Xiong

Fig. 820: Oil bodies 4–5(–6) per cell, spherical, 5–7 μm in diameter, oblong 4–12×4–6 μm, finely granulate, brownish – CHINA, GUANGDI PROVINCE, Bakalin, china-51-57-13.
Mesoptychia gillmanii (Austin) L. Söderstr. et Váňa
Fig. 821: Oil bodies 5–10(11) per cell, spherical, 4–6 μm in diameter, oblong 7–14×4–6 μm, finely granulate, brownish – RUSSIA, Khabarovsky Territory, Bakalin & Klimova, kh-57-17-19.
Fig. 822: Oil bodies 2–4(6) per cell, spherical, 4–6 μm in diameter, oblong 7–12(16)×4–6 μm, finely granulate, brownish – RUSSIA, Magadan Province, Bakalin, mag-29-24-14.
Mesoptychia heterocolpos (Thed. ex Hartm.) L. Söderstr. et Váňa
Fig. 823: Oil bodies (2–)3–6(–7) per cell, spherical, 4–5(6) μm in diameter, oblong 6–16×4–7 μm, finely granulate, brownish – RUSSIA, Khabarovsky Territory, Bakalin & Klimova, kh-49-23-19.
Fig. 824: Oil bodies 4–10 per cell, spherical, 4–6(8) μm in diameter, oblong 7–16×4–7 μm, granulate, with 1–2 central eye – RUSSIA, Sakhalin Province, Bakalin, k-80-48-15.
Comment: K-80-48-15 possesses oil bodies with 1–2 eyes and probably belongs to not yet described taxon.

Mesoptychia heterocolpos var. arctica (S.W. Arnell) L. Söderstr. et Váňa
Fig. 825: Oil bodies 5–7 per cell, spherical, 5–8 μm in diameter, oblong 6–16×5–7 μm, granulate, brownish – RUSSIA, Magadan Province, Bakalin, mag-31-4-14.
Mesoptychia igiana (S. Hatt.) L. Söderstr. et Váňa
Fig. 826: Oil bodies 4–6 per cell, spherical, 4–6 μm in diameter, oblong 6–10(12)×4–6 μm, finely granulate – CHINA, Yunnan Province, Bakalin, c-86-11-18.
Mesoptychia rutheana (Limpr.) L. Söderstr. et Váňa
Fig. 827: Oil bodies 3–4(–6) per cell, spherical, 6–8 μm in diameter, oblong 8–15×5–6 μm, finely granulate – RUSSIA, Kamchatka Territory, Bakalin, k-58-11-15.
Fig. 828: Oil bodies 4–8(9) per cell, spherical, 5–9 μm in diameter, oblong 7–16×5–6 μm, granulate – RUSSIA, Khabarovsky Territory, Bakalin & Klimova, kh-59-5-19.
Fig. 829: Oil bodies 4–6 per cell, spherical, 5–8 μm in diameter, oblong 6–16×5–8 μm, finely granulate, brownish – RUSSIA, Magadan Province, Bakalin, mag-29-32-14_2.
Liverwort oil body diversity in Pacific Asia

Mesoptychia rutheana (Limpr.) L. Söderstr. et Váň
Fig. 830: Oil bodies 4–8 per cell, spherical, 5–8 μm in diameter, oblong 8–18×5–7 μm, finely granulate – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-29-32-14.

Mesoptychia sahlbergii (Lindb. et Arnell) A. Evans
Fig. 831: Oil bodies 5–13 per cell, spherical, 5–7 μm in diameter, oblong 6–13×4–6 μm, finely granulate, brownish – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-29-38-14.

Mesoptychia ussuriensis (Bakalin) L. Söderstr. et Váňa
Fig. 832: Oil bodies (2–)3–6 per cell, spherical, 4–5 μm in diameter, oblong 4–11×3–5 μm, finely granulate – REPUBLIC OF KOREA, GANGWON-DO, Bakalin, kor-64-2-19.

Fig. 833: Oil bodies 2–3(5) per cell, oblong 6–10×3–5 μm, finely granulate, biconcave – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-11-1-14.

Mesoptychia ussuriensis (Bakalin) L. Söderstr. et Váňa
Fig. 834: Oil bodies 2–5(–7) per cell, spherical, 4–8 μm in diameter, oblong 5–9×4–5 μm, nearly smooth, biconcave – RUSSIA, PRIMORSKY TERRITORY, Klimova, prim-156-1-19.

Solenostomataceae

Cryptocolea imbricata R.M. Schust.
Fig. 835: Oil bodies 4–7 per cell, spherical, 6–12 μm in diameter, oblong 6–13×5–10 μm, coarsely granulate – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-48-6-15.

Fig. 836: Oil bodies 4–8 per cell, spherical, 5–12 μm in diameter, oblong 6–12×5–10 μm, coarsely granulate to botryoidal – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-66-17-15.

Fig. 837: Oil bodies 4–10 per cell, spherical, 4–7 μm in diameter, oblong 4–8×6–13 μm, botryoidal – RUSSIA, Khabarovsk Territory, Bakalin & Klimova, kh-42-3-19.

Diplocolea sp.
Fig. 838: Oil bodies (2–)3–6 per cell, spherical, 5–8 μm in diameter, oblong 5–12×5–8 μm, granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-47-11-18.
Metasolenostoma ochotense (Bakalin & Vilnet) Vilnet & Bakalin

Fig. 839. – Oil bodies 4–9(12) per cell, spherical, 4–10 μm in diameter, oblong 6–12×4–6(7) μm, finely granulate, brownish – RUSSIA, KAMCHATKA TERRITORY, Chernyagina, 29082017_5.

Fig. 840. – Oil bodies 5–9(10) per cell, spherical, 4–6 μm in diameter, oblong 6–12×4–5 μm, finely granulate, brownish – RUSSIA, KAMCHATKA TERRITORY, Chernyagina, 29082017_9.

Fig. 841. – Oil bodies 7–13 per cell, rarely spherical, 6–8 μm in diameter, oblong 8–20×5–7 μm, granulate, brownish – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-15-15-17.

Fig. 842. – Oil bodies 8–15 per cell, spherical, 5–8 μm in diameter, oblong 8–15×5–7 μm, granulate, brownish – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-15-15-17_2.

Fig. 843: Oil bodies 3–7 per cell, spherical, 4–5 μm in diameter, oblong 6–15×4–6 μm, finely granulate, brownish – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-84-2-15.

Metasolenostoma orientale Bakalin & Vilnet

Fig. 844: Oil bodies 2–5 per cell, oblong 8–20×5–8 μm, segmented – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-79-11-15.

Fig. 845: Oil bodies 2–3 per cell, spherical, 5–7 μm in diameter, oblong 7–14×5–7 μm, nearly smooth with very large central eye – RUSSIA, KAMCHATKA TERRITORY, Klimova, kam-66-12-16.

Fig. 846: Oil bodies 2–3 per cell, spherical, 5–8 μm in diameter, oblong 6–10×5–8 μm, smooth with very large eye – RUSSIA, KAMCHATKA TERRITORY, Klimova, kam-66-13-16.

Fig. 847: Oil bodies (1–)2–3 per cell, spherical, 5–8 μm in diameter, oblong 6–10×5–8 μm, smooth – RUSSIA, KAMCHATKA TERRITORY, Klimova, kam-66-8-16.
Liverwort oil body diversity in Pacific Asia

Metasolenostoma rubripunctatum (S. Hatt.) Vilnet & Bakalin

Fig. 848: Oil bodies 2–4 per cell, spherical, 7–9 μm in diameter, oblong 8–15×6–7–9(–10) μm, botryoidal to coarsely granulate – JAPAN, KOCHI PREFECTURE, Bakalin, j-8-25-15.

Fig. 849: Oil bodies 2–3 per cell, spherical, 6–10 μm in diameter, oblong 8–14×6–9 μm, coarsely granulate – JAPAN, KOCHI PREFECTURE, Bakalin, j-8-25-15 9.

Fig. 850: Oil bodies (1–)2 per cell, spherical, 6–8 μm in diameter, oblong 8–12×5–8 μm, coarsely granulate – JAPAN, KOCHI PREFECTURE, Bakalin, j-8-25-15 10.

Fig. 851: Oil bodies (1–)2 per cell, spherical, (6–)8–10 μm in diameter, oblong 8–14×7–9 μm, coarsely granulate – JAPAN, KOCHI PREFECTURE, Bakalin, j-8-25-15 2.

Fig. 852: Oil bodies 2–6(–8) per cell, spherical, 5–7 μm in diameter, oblong 7–20×5–8 μm, granulate, brownish – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-17-6-19.

Fig. 853: Oil bodies 2–3(–4) per cell, oblong 7–18×4–8 μm, finely granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-25-10-20.

Fig. 854: Oil bodies 2–3(–4) per cell, oblong 7–18×4–8 μm, finely granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-25-10-20.

Comment: The strong differences in oil bodies and cell features between Japanese and Vietnamese populations suggest taxonomic differences between them too. Noticeable, the both groups of populations (haplotypes?) are characterized by similar purple gemmae that prevent the mistake with other recognized species of the family.

Plectocolea ariadne (Taylor) Mitt.

Fig. 856: Oil bodies 0–3 per cell, rarely spherical, 14 μm in diameter, oblong 18–35×10–18 μm, granulate, brownish – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-19-2-20 3.
Plectocolea ariadne (Taylor) Mitt.
Fig. 857: Oil bodies 0–2–3 per cell, rarely spherical, 19–20 μm in diameter, oblong 18–35×12–22 μm, granulate, some with 1(-2) unclear eyes, brownish – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-19-2-20.6.

Plectocolea comata S. Hatt.
Fig. 858: Oil bodies (1–)2(–3) per cell, spherical, 10–18 μm in diameter, oblong 12–28×10–16 μm, coarsely granulate, with 1-several eyes, brownish – REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-30-37-15-4.
Fig. 859: Oil bodies 0–2 per cell, oblong 12–27×8–17 μm, coarsely granulate, with 1-several eyes, brownish – REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-30-37-15-6.

Plectocolea emarginata Amakawa
Fig. 860: Oil bodies 1–4 per cell, spherical, 7–10 μm in diameter, oblong 6–15×5–9 μm, finely granulate, sometimes biconcave – REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-29-39-15.

Plectocolea erecta Amakawa
Fig. 861: Oil bodies 5–10(-13) per cell, spherical, 4–7 μm in diameter, oblong 6–15(–17)×5–6 μm, granulate – REPUBLIC OF KOREA, Bakalin, kor-43-8-14.
Fig. 862: Oil bodies 2–6(–8) per cell, spherical, (5–)6–8 μm in diameter, oblong 7–22×5–7 μm, granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-73-8-19.
Fig. 863: Oil bodies (2–)3–7(–9) per cell, spherical, 5–8 μm in diameter, oblong 8–18×5–8 μm, finely granulate to coarsely so – VIETNAM, LAO CAI PROVINCE, Bakalin, v-2-92-16.

Plectocolea flagellata S. Hatt.
Fig. 865: Oil bodies 3–5(–8) per cell, spherical, 5–7 μm in diameter, oblong 6–12(–16)×5–7(–10) μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin, v-2-97-16.

Plectocolea flagellata S. Hatt.
Fig. 865: Oil bodies 2–3(–4) per cell, rarely spherical, 6–9 μm in diameter, oblong 8–18×7–10 μm, botryoidal – JAPAN, KAGOSHIMA PREFECTURE, Furuki, CBM.
Liverwort oil body diversity in Pacific Asia

Plectocolea flagellata S. Hatt.

Fig. 866. – Oil bodies 2–3 per cell, rarely spherical, 9–10 μm in diameter, oblong 11–20×8–11 μm, botryoidal – JAPAN, KAGOSHIMA PREFECTURE, Furuki, CBM_2.

Plectocolea granulata (Steph.) Bakalin

Fig. 867. – Oil bodies 2–4 per cell, rarely spherical, 7–8 μm in diameter, oblong 8–22×7–8 μm, finely granulate, brownish, rarely with eye – JAPAN, KAGOSHIMA PREFECTURE, Furuki, Furuki23500 CBM_3.

Fig. 868. – Oil bodies 2–3 per cell, rarely spherical, 10 μm in diameter, oblong 10–20×7–10 μm, finely granulate, brownish, some with 1–several eyes – JAPAN, KAGOSHIMA PREFECTURE, Furuki, Furuki23500 CBM_5.

Plectocolea hattoriana Amakawa

Fig. 869. – Oil bodies 3–4 per cell, spherical, 8–10 μm in diameter, oblong 8–17×7–8(–10) μm, granulate, brownish – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-91-13-15.

Fig. 870: Oil bodies (2–)4–8 per cell, spherical, 5–7 μm in diameter, oblong 8–20×5–6(–7) μm, granulate, brownish – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-2-10-17.

Plectocolea haskarliana (Nees) Mitt.

Fig. 871: Oil bodies 0–5 per cell, rarely spherical, 8–10 μm in diameter, oblong 13–30×7–11 μm, coarsely granulate – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-1-1-20.

Fig. 872: Oil bodies (0–)2–5 per cell, spherical, 11–18 μm in diameter, oblong 14–30×10–15 μm, coarsely granulate, rarely with 1–2 unclear eyes – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-22-6-20.

Plectocolea hattoriana Amakawa

Fig. 873: Oil bodies 2–4 per cell, oblong 10–20×7–10 μm, botryoidal – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-78-38-15.

Fig. 874: Oil bodies 2 per cell, spherical, 9–12 μm in diameter, oblong 10–16×9–12 μm, coarsely granulate to botryoidal – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-78-13-15.
Plectocolea hattoriana Amakawa
Fig. 875: Oil bodies 2 per cell, spherical, 7–9 μm in diameter, oblong 10–20×6–8 μm, coarsely granulate to botryoidal. – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-48-19-16.

Plectocolea horikawana Amakawa
Fig. 876: Oil bodies 2–3 per cell, spherical, 5–9 μm in diameter, oblong 6–14×6–8 μm, granulate, with central eye. – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-80-30-15.

Fig. 877: Oil bodies 2–3 per cell, spherical, 5–6 μm in diameter, oblong 6–16×5–7 μm, finely granulate, with 1(-2) eyes. – REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-30-68-15.

Plectocolea infusca Mitt.
Fig. 878: Oil bodies 3–6 per cell, spherical, 9–14 μm in diameter, oblong 8–28×8–14 μm, granulate, brownish. – JAPAN, KOCHI PREFECTURE, Bakalin, j-11-10-15.

Fig. 879: Oil bodies 3–6 per cell, spherical, 8–12 μm in diameter, oblong 10–23×8–12 μm, granulate, brownish. – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-23-18-18.

Fig. 880: Oil bodies 3–5 per cell, spherical, 10–13 μm in diameter, oblong 12–25×10–13 μm, finely granulate, brownish. – REPUBLIC OF KOREA, GYEONGSANGNAM-DO, Bakalin, kor-70-22-19.

Plectocolea infusca var. recondita Bakalin
Fig. 881: Oil bodies 3–6 per cell, spherical, 8–10×6–8 μm, coarsely granulate to botryoidal. – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-23-15-18.

Fig. 882: Oil bodies 4–9×6–8 μm. – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-57-12-20.

Fig. 883: Oil bodies 3–6 per cell, spherical, 5–7 μm in diameter, oblong 7–18×5–7 μm, granulate, brownish. – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-37-8-15.
Liverwort oil body diversity in Pacific Asia

Plectocolea infusca var. recondita Bakalin
Fig. 884: Oil bodies 4–8 per cell, spherical, 5–8 μm in diameter, oblong 6–15×5–7 μm, finely granulate to granulate, brownish – RUSSIA, SAKHALIN PROVINCE, Klimova & Bakalin, shik-37-13-20.

Plectocolea kurilensis (Bakalin) Bakalin & Vilnet
Fig. 885: Oil bodies 4–10 per cell, spherical, 5–8 μm in diameter, oblong 10–15×5–8 μm, coarsely granulate to botryoidal – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-69-16-15_2.
Fig. 886: Oil bodies 2–4 per cell, spherical, 6–7 μm in diameter, oblong 7–15×6–9 μm, granulate – RUSSIA, PRIMORSKY TERRITORY, Bakalin, p-31-2-15.
Fig. 887: – Oil bodies 3–5–8 per cell, spherical, 6–8 μm in diameter, oblong 8–12×6–8 μm, botryoidal to coarsely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-34-9-18.
Fig. 888: – Oil bodies 5–8 per cell, spherical, 5–8 μm in diameter, oblong 7–15×5–7 μm, coarsely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-71-39-15.

Plectocolea marginata S. Hatt.
Fig. 889. – Oil bodies in the leaf margin cells 2–3 per cell, spherical, (4–)5–6 μm in diameter, oblong 5–9×4–6 μm, finely granulate to nearly smooth – JAPAN, KAGOSHIMA PREFECTURE, Furuki, CBM 2-3.
Fig. 890. – Oil bodies 2–3 per cell, spherical, (4–)5–7 μm in diameter, oblong 5–10×3–4–6 μm, finely granulate to nearly smooth – JAPAN, KAGOSHIMA PREFECTURE, Furuki, CBM 2-3_3.

Plectocolea ovalifolia (Amakawa) Bakalin & Vilnet
Fig. 891: Oil bodies 3–7 per cell, spherical, 5–6 μm in diameter, oblong 6–15×5–10 μm, granulate – RUSSIA, Khabarovsk Territory, Bakalin, kh-22-6-16.
Fig. 892: Oil bodies 5–9 per cell, spherical, (3–)4–5 μm in diameter, oblong 6–11×4–5 μm, finely granulate – RUSSIA, Khabarovsk Territory, Bakalin, kh-31-18-16.
Plectocolea radicellosa (Mitt.) Mitt.

Fig. 893: Oil bodies 2–4 per cell, spherical, (5–)6–8 μm in diameter, oblong (6–)8–16×6–8 μm, coarsely mgranulate, with 1–several eyes – REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-30-53-15.

Fig. 894: Oil bodies 2–6(–8) per cell, spherical, 8–12 μm in diameter, oblong 10–27×7–11 μm, granulate to coarsely so, with 1–several eyes – REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-30-64-15.

Plectocolea rosulans (Steph.) S. Hatt.

Fig. 895: Oil bodies 3–6 per cell, rarely spherical, 5–6 μm in diameter, oblong 7–18×5–10 μm, finely granulate – REPUBLIC OF KOREA, GYEONGSANGNAM-DO, Bakalin, kor-23-3-15.

Fig. 896: Oil bodies 7–10 per cell, spherical, 6–8 μm in diameter, oblong 7–18×6–9 μm, granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-73-2-19.

Plectocolea sordida S. Hatt.

Fig. 897: Oil bodies 8–12 per cell, spherical, (5–)6–8 μm in diameter, oblong 7–19×(5–)6–8 μm, granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-80-4-19.

Fig. 898: Oil bodies 5–10 per cell, spherical, 8–10 μm in diameter, oblong 10–15×(18)8–10 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-1-46-17.

Plectocolea tetragona (Lindenb.) Amakawa

Fig. 899: Oil bodies (1–)2(–3) per cell, spherical, 6–8 μm in diameter, oblong (8–)10–14×6–8 μm, granulate – VIETNAM, HOA BINH PROVINCE, Bakalin & Klimova, v-29-13-19.

Fig. 900: Oil bodies 1 per cell, spherical, oblong 34–40×12–20 μm, coarsely granulate – INDONESIA, JAVA ISLAND, Bakalin, java-1-1-15.

Fig. 901: Oil bodies 1 per oil cell, spherical, oblong 22–34×12–18 μm, coarsely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-3-2-17.
Plectocolea truncata (Nees) Herzog

Fig. 902: Oil bodies 3–5 per cell, spherical, 5–7(–7) μm in diameter, oblong 10–20(–25)×5–6 μm, finely granulate – CHINA, GUIZHOU PROVINCE, Bakalin, China-56-66-13.

Fig. 903: Oil bodies 2–4(–6) per cell, spherical, 6–8 μm in diameter, oblong (8–)10–17(–19)×5–8 μm, granulate – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-91-42-15.

Fig. 904: Oil bodies 2–5 per cell, oblong (8–)10–18(–22)×(4–)5–6 μm, granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-2-4-17.

Plectocolea virgata Mitt.

Fig. 905: Oil bodies 2(–4) per cell, spherical, (7–)8–10(–12) μm in diameter, as crumbling paper ball – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-91-64-15.

Plectocolea vulcanicola (Schiffn.) Bakalin

Fig. 906: Oil bodies 1–2 per cell, spherical, 6–10 μm in diameter, oblong 8–13×7–(–11) μm, crumpled – RUSSIA, SAKHALIN PROVINCE, Bakalin & Borovichev, exs1 goryachaya river.

Plectocolea yunnanensis Bakalin

Fig. 907: Oil bodies 1(–2) per cell, spherical, 7–10 μm in diameter, crumpled to nearly smooth, with small central eye – REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-30-47-15.

Protosolenostoma fusiforme (Steph.) Vilnet & Bakalin

Fig. 908: Oil bodies 2–3 per cell, spherical, 5–7 μm in diameter, oblong 7–18×4–6 μm, granulate, with central eye – RUSSIA, SAKHALIN PROVINCE, Bakalin & Borovichev, exs1 goryachaya river.
Protosolenostoma fusiforme (Steph.) Vilnet & Bakalin

Fig. 911: Oil bodies 2–3 per cell, rarely spherical, 6–7 μm in diameter, oblong 10–16×6–7 μm, coarsely granulate – JAPAN, KAGOSHIMA PREFECTURE, Furuki, CBM_4.

Fig. 912: Oil bodies 1–2 per cell, spherical, 6–10 μm in diameter, coarsely granulate to botryoidal – REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-29-46-15_22.

Fig. 913: Oil bodies 1–2 per cell, spherical, 6–8 μm in diameter, rarely oblong 10–12×6–7 μm, coarsely granulate to botryoidal – REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-29-46-15_3.

Fig. 914: Oil bodies (1–)2 per cell, spherical, (5–)6–8 μm in diameter, oblong 7–15×6–8 μm, coarsely granulate to botryoidal – REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-29-46-15_6.

Fig. 915: Oil bodies (1–)2(–3) per cell, spherical, 6–8 μm in diameter, oblong 7–14×6–7 μm, coarsely granulate to botryoidal – REPUBLIC OF KOREA, JEJU-DO, Bakalin, kor-29-59-15_2.

Comment: The populations from Japan and Korea may belong to different species, but this concept was not tested in the course of the present study. The type of Protosolenostoma genus is Solenostoma koreanum Steph. treated as the heterotypic synonym of S. fusiforme.

Solenostoma appressifolium (Mitt.) Váňa et D.G.Long

Fig. 916: Oil bodies (2–)3–4 per cell, rarely spherical, 5–6 μm in diameter, mostly oblong 6–12×4–7 μm, nearly smooth to finely granulate, mostly biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-77-22-18.

Fig. 917: Oil bodies (1–)2 per cell, spherical, 4–7 μm in diameter, oblong 5–9×4–6 μm, finely granulate – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-25-5-20.

Solenostoma appressifolium var. minor (Amakawa) Váňa et D.G.Long

Fig. 918: Oil bodies (1–)2–3 per cell, rarely spherical, 4–6 μm in diameter, oblong 5–11×(3–)4–6 μm, nearly smooth to finely granulate, mostly biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-87-6-18.

Solenostoma atrorevolutum (Grolle ex Amakawa) Váňa et D.G.Long

Fig. 919: Oil bodies (1–)2 per cell, spherical, 3–4 μm in diameter, oblong (3–)4–6×(2–)3–4 μm, finely granulate, some biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-85-9-18.
Solenostoma bilobum (S.Hatt. ex Amakawa) Potemkin et Nyushko

Fig. 920: Oil bodies 3–5 per cell, spherical, 4–6 μm in diameter, oblong 5–8×4–6 μm, finely smooth the finely granulate, some biconcave – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-31-6-18.

Solenostoma confertissimum (Nees) Schljakov

Fig. 921: Oil bodies (3–)4–5(–7) per cell, spherical, (4–)5–8 μm in diameter, oblong 6–17×(4–)5–8 μm, finely granulate – RUSSIA, MURMANSK PROVINCE, Bakalin, mar-33-1-15.

Solenostoma flagellare (Amakawa) Váňa et D.G.Long

Fig. 922: Oil bodies 2–3 per cell, spherical, 3–4(–5) μm in diameter, oblong 4–10×(2–)3–4(–5) μm, finely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-85-7-18.

Solenostoma flavorevolutum (Váňa) Váňa et D.G.Long

Fig. 923: Oil bodies (1–)2–5(–8) per cell, spherical, 4–5 μm in diameter, oblong 4–10×(3–)5–(6) μm, finely granulate – CHINA, YUNNAN PROVINCE, Bakalin, c-87-5-18.

Solenostoma gollanii Steph.

Fig. 924: Oil bodies 2–4 per cell, spherical, 5–8 μm in diameter, oblong 5–12×(14)×3–8 μm, finely granulate, some biconcave – CHINA, YUNNAN PROVINCE, Bakalin, c-73-42-18.

Comment: this is not the same taxon with Plectocolea gollanii (Steph.) Bakalin treated in the World checklist (Söderström et al., 2016) as Jungermannia gollanii Steph. despite the type of the latter belongs to Plectocolea, not Jungermannia (Bakalin, 2014).

Solenostoma heterolimbatum (Amakawa) Váňa et D.G.Long

Fig. 925. – Oil bodies 2–10(–14) per cell, spherical, 4–8 μm in diameter, oblong 7–20×5–8 μm, granulate to coarsely so – VIETNAM, LAO CAI PROVINCE, Bakalin, v-2-108-16. 5

Fig. 926. – Oil bodies 3–10(–12) per cell, spherical, 5–8 μm in diameter, oblong 6–20×4–8 μm, granulate to coarsely so – VIETNAM, LAO CAI PROVINCE, Bakalin, v-2-108-16. 6

Solenostoma hokkaidense (Váňa) Váňa

Fig. 927: Oil bodies 2–6 per cell, spherical, 4–6(–7) μm in diameter, oblong 5–10(–12)×4–6 μm, finely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, i-78-28-15.

Fig. 928: Oil bodies 3–6(–10) per cell, spherical, 4–7 μm in diameter, oblong 6–12(–14)×5–8 μm, granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-42-10-18.
Solenostoma hyalinum (Lyell) Mitt.
Fig. 929: Oil bodies 3–4(-6) per cell, rarely spherical, 5–6 μm in diameter, oblong 5–16×4–6 μm, finely granulate – RUSSIA, Khabarovsk Territory, Bakalin, kh-22-12-16.

Solenostoma lanigerum (Mitt.) Váňa et D.G.Long
Fig. 930: Oil bodies 2–3 per cell, spherical, 5–6 μm in diameter, oblong 6–12×3–5 μm, finely granulate, some biconcave – CHINA, Yunnan Province, Bakalin, c-87-1-18.

Solenostoma obovatum (Nees) C.Massal.
Fig. 931: Oil bodies (1–)3–4 per cell, spherical, 7–10 μm in diameter, coarsely granulate – RUSSIA, Sakhalin Province, Bakalin, k-70-12-15.

Solenostoma obscurum (A.Evans) R.M.Schust.
Fig. 932: Oil bodies 2–4(–9) per cell, spherical, 4–8 μm in diameter, oblong 5–10×5–8 μm, granulate – RUSSIA, Magadan Province, Bakalin, mag-33-15-14.

Solenostoma pseudopyriflorum (Amakawa) Váňa et D.G.Long
Fig. 933: Oil bodies (2–)3–6 per cell, spherical, 5–6 μm in diameter, oblong 8–12×5–9 μm, coarsely granulate – RUSSIA, Primorsky Territory, Bakalin, p-36-3-14.

Fig. 934: Oil bodies 2–3(–4) per cell, spherical, 5–8 μm in diameter, oblong 7–16×6–10 μm, coarsely granulate – RUSSIA, Primorsky Territory, Bakalin, p-36-3-14_2.

Solenostoma parvitectum (Amakawa) Váňa et D.G.Long
Fig. 935: Oil bodies 2(–5) per cell, spherical, (4–)5–7 μm in diameter, oblong 5–12(–14)×4–6(–8) μm, granulate – VIETNAM, Lai Chau Province, Bakalin & Klimova, v-11-20-19.

Solenostoma polyrhizoides (Grolle ex Amakawa) Váňa et D.G.Long
Fig. 936: Oil bodies 6–10 per cell, spherical, 6–8 μm in diameter, oblong 8–16(–20)×6–8 μm, granulate – CHINA, Sichuan Province, Bakalin & Klimova, c-33-3-17.

Solenostoma pseudopyriflorum Bakalin & Vilnet
Fig. 937: Oil bodies 4–7 per cell, spherical, (3–)4–5 μm in diameter, oblong 5–10×4–5 μm, finely granulate – RUSSIA, Primorsky Territory, Bakalin, p-35-17-14.
Solenostoma pseudopyriflorum Bakalin & Vilnet
Fig. 938: Oil bodies (2–)3–4 per cell, spherical, 4–5(–6) μm in diameter, oblong 5–9(–10)×4–5 μm, finely granulate – RUSSIA, PRIMORSKY TERRITORY, Klimova & Bakalin, prim-16-35-16.

Solenostoma pusillum (C.E.O. Jensen) Steph.
Fig. 939: Oil bodies 3–5 per cell, spherical, 3–5 μm in diameter, oblong 4–12×3–5(–6) μm, finely granulate – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-61-6-15.

Solenostoma pyriflorum Steph.
Fig. 940: Oil bodies 2–3(–4) per cell, spherical, 6–8 μm in diameter, mostly oblong 8–18(–20)×6–9 μm, finely granulate – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-86-12-15.

Solenostoma rossicum Bakalin & Vilnet
Fig. 941: Oil bodies 2–6 per cell, spherical, 4–9 μm in diameter, oblong 6–16×5–9 μm, finely granulate – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-60-4-15.

Fig. 942: Oil bodies (2–)3–6 per cell, spherical, 5–6 μm in diameter, oblong 6–15×5–7 μm, finely granulate, some with small eye – RUSSIA, Khabarovsk Territory, Bakalin, kh-38-11-13.

Solenostoma rotundatum Amakawa
Fig. 943: Oil bodies 2–3(–4) per cell, spherical, 5–8 μm in diameter, oblong 6–14(–18)×5–7(–9) μm, granulate – JAPAN, KOCHI PREFECTURE, Bakalin, j-9-9-15.

Solenostoma schaulianum (Steph.) Váňa et D.G.Long
Fig. 944: Oil bodies 7–10 per cell, oblong 7–17×4–7 μm, granulate, brownish – VIETNAM, HA GIANG PROVINCE, Bakalin & Klimova, v-15-16-20.

Solenostoma sphaerocarpum (Hook.) Steph.
Fig. 945: Oil bodies 3–5(–9) per cell, rarely spherical, 4–5 μm in diameter, oblong 5–10(–12)×3–4–5(–7) μm, finely granulate – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-48-13-15.

Solenostoma subellipticum (Lindl. ex Heeg) R.M. Schust.
Fig. 946: Oil bodies 2–4 per cell, spherical, 4–7 μm in diameter, oblong 8–12(–15)×4–6(–7) μm, granulate – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-49-18-15.
Solenostoma suborbiculatum (Amakawa) Váňa et D.G.Long

Fig. 947: Oil bodies 2(–3) per cell, spherical, 5–8 μm in diameter, oblong 6–15×5–7 μm, botryoidal – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-11-22-17.

Fig. 948: Oil bodies 2(–3) per cell, spherical, 6–10 μm in diameter, botryoidal – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-11-26-17.

Solenostoma subsp. Bakalin et Vilnet

Fig. 949: Oil bodies 6–14 per cell, spherical, 4–6 μm in diameter, oblong 6–11×4–5 μm, finely granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-73-1-19.

Fig. 950: Oil bodies 5–7 per cell, spherical, 4–5 μm in diameter, oblong 5–9×4–5 μm, finely granulate – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-82-4-19.

Solenostoma ventroversum (Grolle) Váňa et D.G.Long

Fig. 951: Oil bodies (4–)6–8(–10) per cell, spherical, 2–4 μm in diameter, oblong 3–5×2–3 μm, very finely granulate to nearly smooth – VIETNAM, LAI CHAU PROVINCE, Bakalin & Klimova, v-10-11-19.

Endogemmataceae

Endogemma caespiticia (Lindenb.) Konstant., Vilnet et A.V.Troitsky

Fig. 952: Oil bodies 1(–3) per cell, spherical, 8–15 μm in diameter, oblong 11–27×(4–)9–14 μm, granulate to coarsely so – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-47-1-13.

Fig. 953: Oil bodies 1 per cell, spherical, 12–16 μm in diameter, oblong 14–27×11–15 μm, coarsely granulate – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-23-1-14.

Fig. 954: Oil bodies 1 per cell, spherical, 11–12 μm in diameter, oblong 17–24×10–14 μm, coarsely granulate – RUSSIA, MURMANSK PROVINCE, Bakalin, mur-33-3-15.

Fig. 955: Oil bodies 1 per cell, spherical, 12–18 μm in diameter, oblong 13–22×10–15 μm, coarsely granulate – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-28-2-14.
Liverwort oil body diversity in Pacific Asia

Harpanthaceae

Harpanthus flotovianus (Nees) Nees
Fig. 956: Oil bodies 3–6 per cell, rarely spherical, 3–5 μm in diameter, commonly oblong 7–14×4–5 μm, granulate, brownish – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-15-4-17.

Harpanthus scutatus (F.Weber et D.Mohr) Spruce
Fig. 957: Oil bodies 3–5(–10) per cell, spherical, 4–7 μm in diameter, oblong 5–8×3–6 μm, loosely granulate, biconcave – RUSSIA, AMUR PROVINCE, Bakalin, am-69-3-18.

Geocalycaceae

Geocalyx graveolens (Schrad.) Nees
Fig. 958: Oil bodies 5–12 per cell, spherical, 4–6 μm in diameter, oblong 6–10×(3–)4–6 μm, granulate, brownish – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-37-3-17.

Fig. 959: Oil bodies 8–12(13) per cell, spherical, 4–6 μm in diameter, oblong 5–10×4–5 μm, granulate, brownish – RUSSIA, PRIMORSKY TERRITORY, Klimova & Bakalin, prim-16-12-16.

Comment: *G. graveolens* from Sichuan has cells smaller than in Primorsky Territory and may belong to little known *G. lancistipulas*.

Antheliaceae

Anthelia juratzkana (Limpr.) Trevis
Fig. 960: Small putative oil bodies 10–20 per cell, 1–1.5 μm in diameter or smaller – RUSSIA, Khabarovsk TERRITORY, Bakalin & Klimova, kh-47-26-19.

Gymnomitriaceae

Cryptocoleopsis imbricata Amakawa
Fig. 961: Oil bodies 6–12 per cell, spherical, 5–8 μm in diameter, oblong 5–13×5–8 μm, granulate – RUSSIA, KAMCHATKA TERRITORY, Klimova, kam-64-35-16.

Gymnomitrium adustum Nees
Fig. 962: Oil bodies 2(–3) per cell, spherical, 3–5 μm in diameter, oblong 4–7×3–4 μm, nearly smooth – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-48-1-18.

Gymnomitrium alpinum (Gottsch. ex Husn.) Schiffn.
Fig. 963: Oil bodies 2(–3) per cell, spherical, 2–3 μm in diameter, oblong 3–6×2–4 μm, smooth to segmented – JAPAN, Yamanashi PREFECTURE, Bakalin, j-86-4-15.

Gymnomitrium brevissimum (Dumort.) Warnst.
Fig. 964: Oil bodies 2(–3) per cell, spherical, 4–6 μm in diameter, oblong 4–8×3–5 μm, loosely granulate, sometimes biconcetric – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-45-6-15.
Gymnomitrion brevissimum (Dumort.) Warnst.
Fig. 965: Oil bodies 2(–3) per cell, spherical, 2–4 μm in diameter, oblong 3–8×2–3(4)μm, loosely granulate, with small central eye – RUSSIA, KAMCHATKA TERRITORY, Klimova, kamb-48-7a-16.

Gymnomitrion commutatum (Limpr.) Schiffn.
Fig. 966: Oil bodies 2(–3) per cell, spherical, 2–4 μm in diameter, oblong 4–8×(2)3–4 μm, finely granulate – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-43-3-15.

Fig. 967: Oil bodies (1–)2 per cell, spherical, 3–4 μm in diameter, oblong 4–7×3–4 μm, nearly smooth – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-38-3-19.

Gymnomitrion concinnatum (Lightf.) Corda
Fig. 968: Oil bodies 2(–3) per cell, spherical, 3–4 μm in diameter, oblong 5–8×3–4(5) μm, finely granulate – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-2611-14.

Gymnomitrion corallioides Nees
Fig. 969: Oil bodies 2–4 per cell, spherical, 3–7 μm in diameter, oblong 5–10×3–5 μm, granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-40-2-19.

Fig. 970: Oil bodies 2–3(–4) per cell, spherical, 5–7 μm in diameter, oblong 6–14×4–6 μm, finely granulate – RUSSIA, KHABAROVSK TERRITORY, Klimova, khab-73-2-18.

Fig. 971: Oil bodies (1–)2–4 per cell, spherical, 4–5 μm in diameter, oblong 6–8(–10)×4–5(–8) μm, finely granulate to smooth, with small central eye – RUSSIA, KRASNOYARSK TERRITORY, Fedosov, vf84c.

Gymnomitrion corallioides Nees
Fig. 972: Oil bodies 1–3 per cell, spherical, 3–5 μm in diameter, oblong 5–8×4–5 μm, nearly smooth to finely granulate, sometimes biconcave with central eye – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-38-3-19.

Fig. 973: Oil bodies 2–4 per cell, spherical, 4–7(–10) μm in diameter, oblong 6–11×5–7 μm, finely granulate, some with small central eye – RUSSIA, KRASNOYARSK TERRITORY, Fedosov, vf19.
Gymnomitrion crenatilobum Grolle

Fig. 974: Oil bodies 3–5 per cell, spherical, 4–6 μm in diameter, oblong 6–10×4–6 μm, finely granulate to nearly smooth – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-46-4-17.

Gymnomitrion faurieanum (Steph.) Horik.

Fig. 975: Oil bodies 2–3 per cell, spherical, 5–7 μm in diameter, oblong 6–13×5–7 μm, finely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-34-46-18.

Gymnomitrion mucronulatum (N.Kitag.) N.Kitag.

Fig. 976: Oil bodies 1–2(–3) per cell, spherical, 1.5–3 μm in diameter, oblong 3–5×1.5–3 μm, finely granulate to nearly smooth – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-86-5-15.

Fig. 977: Oil bodies 2–3 per cell, spherical, 2–4 μm in diameter, oblong 3–4(–5)×2–3(–5) μm, finely granulate to nearly smooth – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-90-9-15.

Gymnomitrion parvitextum (Steph.) Mamontov, Konstant. & Potemkin

Fig. 978: Oil bodies 2(–3) per cell, spherical, 3–4 μm in diameter, oblong 4–8×2–4 μm, loosely granulate – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-86-7-15.

Fig. 979: Oil bodies 2(–3) per cell, oblong 3–5×1, 5–3 μm, smooth to loosely segmented, biconcave – RUSSIA, Khabarovsk Territory, Klimova, khab-54a-1-18.

Fig. 980: Oil bodies 1–2 per cell, spherical, 4–5 μm in diameter, oblong 5–8×4–5 μm, nearly smooth – REPUBLIC OF KOREA, JEOLLABUK-DO, Bakalin, kor-76-3-19.

Gymnomitrion rubidum (Mitt.) Váňa

Fig. 981: Oil bodies 2–3(4) per cell, spherical, 3–4 μm in diameter, oblong 3–5×2–3 μm, nearly smooth – CHINA, YUNNAN PROVINCE, Bakalin, c-72-17-18.

Gymnomitrion sinense Müll.Frib.

Fig. 982: Oil bodies 1–2(–3) per cell, spherical, 3–4 μm in diameter, oblong 4–6×3–4 μm, nearly smooth – CHINA, SICHUAN PROVINCE, Bakalin & Klimova, c-46-1-17.
Marsupella alata S.Hatt. et N.Kitag
Fig. 983: Oil bodies 2 per cell, spherical, (2–)3–4 μm in diameter, oblong 3–6×3–4 μm, nearly smooth to granulate, sometimes biconcentric – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-35-11-18.

Marsupella apertifolia Steph.
Fig. 984: Oil bodies 2–3(–4) per cell, spherical, 4–5 μm in diameter, oblong 5–12×4–5 μm, finely granulate, with small central eye – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-60-7-15.

Fig. 985: Oil bodies 2(–3) per cell, spherical, 6–9 μm in diameter, oblong 6–10(12)×5–7 μm, finely granulate, with small central eye – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-77-6-15.

Marsupella apiculata Schiffn.
Fig. 986: Oil bodies 2(–3) per cell, spherical, 4–7 μm in diameter, oblong 6–9×4–6 μm, finely granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-76-3-15.

Marsupella boeckii (Austin) Lindb. ex Kaal
Fig. 987: Oil bodies 2(–3) per cell, spherical, 2–4 μm in diameter, oblong 3–6(–10)×2–4 μm, finely granulate – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-48-11-15.

Fig. 988: Oil bodies 2(–4) per cell, spherical, 4–7 μm in diameter, loosely granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-21-10-16.

Fig. 989: Oil bodies 2(–3) per cell, spherical, 2–5 μm in diameter, oblong 4–8×2–3(4) μm, smooth to loosely granulate – RUSSIA, KAMCHATKA TERRITORY, Bakalin & Klimova, kh-47-19-19.

Marsupella condensata (Lngstr. ex C.Hartm.) Lindb. ex Kaal
Fig. 990: Oil bodies 2–4 per cell, spherical, 2–7 μm in diameter, oblong 5–10×4–6 μm, finely granulate – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-51-2-15.

Fig. 991: Oil bodies (1–)2(–3) per cell, spherical, 4–6 μm in diameter, oblong 5–12×4–6 μm, finely granulate – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-60-30-15.
Liverwort oil body diversity in Pacific Asia

Marsupella emarginata (Ehrh.) Dumort.

Fig. 992: Oil bodies 2–3(–4) per cell, spherical, 5–8 μm in diameter, oblong 7–14×5–7 μm, finely granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin, kh-17-31-16.

Fig. 993: Oil bodies 2–3 per cell, spherical, 5–7 μm in diameter, oblong 8–12(–20)×4–6 μm, loosely granulate, with small central eye – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-40-7-19.

Fig. 994: Oil bodies 2–3 per cell, spherical, 6–8 μm in diameter, oblong 8–18(20)×5–8 μm, finely granulate, brownish – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-26-9-14.

Marsupella koreana Bakalin & Fedosov

Fig. 995: Oil bodies 2 per cell, spherical, 4–5 μm in diameter, oblong 5–10×4–5(–6) μm, finely granulate – REPUBLIC OF KOREA, GYEONGSANGNAM-DO, Bakalin, kor-70-4-19.

Marsupella pseudofunckii S.Hatt.

Fig. 996: Oil bodies 2 per cell, spherical, 2–4(5) μm in diameter, oblong 4–7(8)×3–4 μm, loosely granulate – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-88-23-15.

Fig. 997: Oil bodies 2 per cell, spherical, 2–5 μm in diameter, oblong 4–6×2–4 μm, nearly smooth, biconcave – RUSSIA, PRIMORSKY TERRITORY, Klimova & Bakalin, prim-16-34-16.

Marsupella sprucei (Limpr.) Bernet

Fig. 998: Oil bodies 2(–3) per cell, spherical, 3–5 μm in diameter, oblong 5–8(10)×3–4 μm, loosely granulate – RUSSIA, KHABAROVSK TERRITORY, Bakalin & Klimova, kh-40-1-19.

Fig. 999: Oil bodies 2–4(–6) per cell, spherical, 3–4(5) μm in diameter, oblong 4–7×3–4 μm, with common addition of small – Oil bodies 1.5–2 μm in diameter, finely granulate – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-25-2-14.

Fig. 1000: Oil bodies 2–4 per cell, spherical, 3–5 μm in diameter, oblong 6–8×12×3–5 μm, finely granulate – RUSSIA, MURMANSK PROVINCE, Bakalin, mur-32-5-15.
Marsupella stoloniformis N. Kitag.

Fig. 1001: Oil bodies 2(–3) per cell, spherical, 4–6 μm in diameter, smooth – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-11-28-17.

Marsupella tubulosa Steph.

Fig. 1002: Oil bodies 2(–3) per cell, spherical, 4–6 μm in diameter, oblong 4–8×4–6 μm, nearly smooth, biconcetric with large central eye – RUSSIA, SAKHALIN PROVINCE, Bakalin & Klimova, k-35-24-18.

Comment: The oil bodies in the specimen ‘prim-111-19-17’ (from Sikhote-Alin Mountains, Primorsky Territory) bear 0 to several central eyes of various diameter, contrary to the typical morphotypes of M. tubulosa.

Marsupella vietnamica Bakalin & Fedosov

Fig. 1006: Oil bodies 2–3 per cell, spherical, 4–7 μm in diameter, oblong 6–10×4–6 μm, finely granulate – VIETNAM, LAO CAI PROVINCE, Bakalin & Klimova, v-11-17-17.

Nardia assamica (Mitt.) Amakawa

Fig. 1008: Oil bodies in some cells, 1 per cell, oblong 10–13×6–7 μm, granulate – JAPAN, TOTTORI PREFECTURE, Bakalin, j-3-1-13.

Fig. 1009: Oil bodies in some cells, 1 per cell, oblong 10–16×7–10 μm, granulate – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-70-26-15.
Liverwort oil body diversity in Pacific Asia

Nardia assamica (Mitt.) Amakawa

Fig. 1010: Oil bodies 1 per cell, spherical, 7–9 μm in diameter, oblong 10–18×7–10 μm, finely granulate – RUSSIA, Khabarovsk Territory, Bakalin, kh-47-2-13.

Fig. 1011: Oil bodies 1(–2) per cell, spherical, 7–10 μm in diameter, oblong (8–)10–25×7–12 μm, granulate – REPUBLIC OF KOREA, Jeollabuk-do, Bakalin, kor-78-3-19.

Comment: *N. assamica* from Khabarovsk Territory (Kh-47-2-13) was identified with some doubts since oil bodies are distributed in all (or nearly so) leaf cells. However, subhorizontally inserted and distant leaves suggest this species rather than *N. subclavata*.

Nardia breidleri (Limpr.) Lindb.

Fig. 1012: Oil bodies 1 per cell, spherical, 4–6 μm in diameter, loosely segmented to as crumpled paper ball – RUSSIA, Sakhalin Province, Bakalin & Klimova, k-47-23-18.

Fig. 1013: Oil bodies 1 per cell, spherical, (4–)5–8 μm in diameter, coarsely granulate to as crumpled paper ball – RUSSIA, Murmansk Province, Bakalin, mur-33-4-15.

Nardia compressa (Hook.) Gray

Fig. 1014: Oil bodies 1–2 per cell, spherical, 7–8(–10) μm in diameter, oblong 10–15(–18)×6–11 μm, smooth – RUSSIA, Sakhalin Province, Bakalin, k-76-1-15.

Nardia geoscyphus (De Not.) Lindb.

Fig. 1015: Oil bodies 2–3 per cell, oblong 8–18×(4–)5–6 μm, granulate – RUSSIA, Magadan Province, Bakalin, mag-25-20-14.

Fig. 1016: Oil bodies 2(–3) per cell, spherical, 6–8 μm in diameter, oblong 8–17×6–8 μm, granulate – RUSSIA, Magadan Province, Bakalin, mag-30-6-14.

Fig. 1017: Oil bodies 2(–3) per cell, spherical, 5–7 μm in diameter, oblong 8–16(–20)×6–8 μm, granulate – RUSSIA, Kamchatka Territory, Bakalin, k-49-6-15.

Nardia harae Amakawa

Fig. 1018: Oil bodies 2 per cell, spherical, 6–8 μm in diameter, oblong 8–16×6–8 μm, smooth – JAPAN, Yamanashi Prefecture, Bakalin, j-88-14-15.
Nardia hiroshii Amakawa
Fig. 1019: Oil bodies 2–4 per cell, spherical, 6–7 μm in diameter, oblong 7–18×5–7 μm, coarsely granulate – JAPAN, YAMANASHI PREFECTURE, Bakalin, j-86-3-15.

Nardia inseta Lindb.
Fig. 1020: Oil bodies 2–4 per cell, spherical, 6–8 μm in diameter, oblong 6–18×5–7 μm, granulate, brownish – RUSSIA, Khabarovsk Territory, Bakalin, kh-38-3-13.

Nardia japonica Steph.
Fig. 1021: Oil bodies 2 per cell, oblong 10–16×(5–)6–8 μm, coarsely granulate to botryoidal – RUSSIA, MAGADAN PROVINCE, Bakalin, mag-21-27-14.

Fig. 1022: Oil bodies 2(–3) per cell, oblong 10–15(–18)×7–10(–12) μm, coarsely granulate to botryoidal – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-27-28-17.

Fig. 1023: Oil bodies 2 per cell, spherical, 6–10 μm in diameter, oblong 8–15×5–9 μm, coarsely granulate to botryoidal – RUSSIA, SAKHALIN PROVINCE, Bakalin, s-47-7-16.

Nardia pacifica Bakalin
Fig. 1024: Oil bodies 2(–3) per cell, spherical, (4–)5–8 μm in diameter, oblong 8–16(–20)×6–8 μm, smooth – RUSSIA, KAMCHATKA TERRITORY, Bakalin, k-67-7-15.

Fig. 1025: Oil bodies 2 per cell, spherical, 4–6 μm in diameter, oblong 6–14×(3–)4–5 μm, botryoidal to segmented – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-76-8-15.

Nardia scalaris Gray
Fig. 1026: Oil bodies 2(–3) per cell, spherical, 5–6 μm in diameter, oblong 10–20(–24)×3–8 μm, botryoidal – RUSSIA, SAKHALIN PROVINCE, Bakalin, k-78-11-15.

Fig. 1027: Oil bodies 2(–5) per cell, spherical, 5–10 μm in diameter, oblong 8–13(–16)×5–8 μm, smooth – RUSSIA, MURMANSK PROVINCE, Bakalin, mur-32-41-15.
Liverwort oil body diversity in Pacific Asia

Fig. 1028: Oil bodies 1 per cell, spherical, 8–12 μm in diameter, oblong 10–18×8–12 μm, granulate, brownish – RUSSIA, SAKHALIN PROVINCE, Borovichev, Be-244-7-13.

Fig. 1029: Oil bodies 1(–3) per cell, oblong (10–)15–25×(6–)10–14 μm, granulate, brownish – JAPAN, KOKESHI PREFECTURE, Bakalin, j-8-29-15.

Fig. 1030: Oil bodies 1(–2) per cell, rarely spherical, 8–10 μm in diameter, oblong 14–27×9–11 μm, finely granulate, with 1–several unclear eyes – VIETNAM, CAO BANG PROVINCE, Bakalin & Klimova, v-21-20-20.

Nardia unispiralis Amakawa

Fig. 1031: Oil bodies 2(–3) per cell, spherical, 7–9 μm in diameter, oblong 10–20×5–7 μm, coarsely granulate – RUSSIA, KHLABOROVSK TERRITORY, Bakalin & Klimova, kh-41-6-19.

Prasanthus suecicus (Gottsche) Lindb.

Fig. 1032: Oil bodies in some cells only 2(–3) per cell, spherical, 4–6 μm in diameter, oblong 4–6×3–5 μm, loosely granulate – RUSSIA, KHLABOROVSK TERRITORY, Bakalin & Klimova, kh-41-6-19.

ACKNOWLEDGEMENTS

Authors thank Vladimir Fedosov (MW), Eugeny Borovichev (KPABG), Tatsuwo Furuki (CBM) and Olga Chernyagina (KAM) for provided specimens for our studies; Bakalin and Klimova also thank their colleagues for the help in the field researches, especially Olga Pisarenko (NSK) for the participation in the expeditions where many specimens were collected. Authors thank Ms. Olga Deryugina for the assistance in the technical preparation of the layerwise photographs. The laboratory work of V.A. Bakalin and K.G. Klimova was partially supported by the grant from the Russian Foundation for the Basic Research (no. 20-04-00278 & 20-54-54002) and is within the frame of institutional research project “Cryptogamic Biota of Pacific Asia: taxonomy, floristics and distribution patterns of taxa” (no. AAAA-A20-120031990012-4). Collection and analysis of the specimens from Vietnam was partially supported by the Vietnam Academy of Science and Technology (Project no. KHCBTD.02/21-23). The work of S.S. Choi was partially supported by the National Ecosystem Survey of National Institute of Ecology (NIE-A-2021-1).

LITERATURE CITED

Nardia subclavata (Steph.) Amakawa

Fig. 1028: Oil bodies 1 per cell, spherical, 8–12 μm in diameter, oblong 10–18×8–12 μm, granulate, brownish – RUSSIA, SAKHALIN PROVINCE, Borovichev, Be-244-7-13.

Fig. 1029: Oil bodies 1(–3) per cell, oblong (10–)15–25×(6–)10–14 μm, granulate, brownish – JAPAN, KOKESHI PREFECTURE, Bakalin, j-8-29-15.
Liverwort oil body diversity in Pacific Asia

TREMBLAY, S.L. 2016. Early trait evolution in liverworts (Marchantiophyta), with an emphasis on oil bodies and Paleozoic taxa. – UC Berkeley. ProQuest ID: Tremblay_berkeley_0028E_16479. Merrit ID: ark:/13030/m5sm3 × 29. Retrieved from https://escholarship.org/uc/item/4z453sc0

TREMBLAY, S.L. 2016. Early trait evolution in liverworts (Marchantiophyta), with an emphasis on oil bodies and Paleozoic taxa. – UC Berkeley. ProQuest ID: Tremblay_berkeley_0028E_16479. Merrit ID: ark:/13030/m5sm3 × 29. Retrieved from https://escholarship.org/uc/item/4z453sc0

Species Index (with references to the figure numbers)

Acanthocladius yoshinagana	164	Cephalozia conchata	487	E. consociata	124
Acrobolbus ciliatus	722, 723	Cephaloziaella crispatula	506	F. crispulicaita	125
Acroclejeunea infuscata	165, 166	C. divaricata	507	F. davurica	126–128
A. recurvata	167	C. konstantinovae	508	F. diversitexta	129
A. sandvicensis	168, 169	C. microphyla	509	F. duthiana var. szechuanensis	130
Allocblipsis parvifolia	486	C. spinicaulis	510, 511	F. ericoides	131
Anastropea orcadensis	666	C. spinigera	512	F. fuscoviridis	132
Anastrophylum assimile	667, 668	C. willisiana	513, 514	F. hypoleuca	133, 134
A. michauxii	670	Cheilolejeunea longiflora	170	F. ignatovii	135
A. tridentata	40	C. osumiensis	173, 174	F. koponeinit	137, 138
A. trigonum	41, 42	C. trapezia	175	F. moniliata	139
Anthelia juratzkana	960	C. tristani	176	F. muscicola	140
Apotreubia nana	2	Chlorocyclus pallescens	364	F. nepalensis	141–143
Arnellia fennica	730, 731	C. polyanthos	365, 366	F. parvistipula	144
Barbilophozia barbata	671	C. rivularis	367	F. serrata	146
B. hatcheri	672	Cladopodiella fluitans	488	F. sinensis	146
B. lycopodioides	673	C. franciscia	489	F. subarctica	147
Bazzania angustistipula	306	Colejeunea cheni	177	F. tagawa	148
B. asperrima	307, 308	C. denticulata	178	F. takayuensis	149, 150
B. bidentula	309, 310	C. doyana	179	F. usamisensi	151
B. calcarata	311	C. gottschei	180	F. yuennanensis	152–154
B. demudata	312	C. haskarliana	181	Geocalyx graveolens	958, 959
B. eosa	313	C. japonica	182	Gongylanthus himalayensis	962
B. fauriana	314	C. longiflora	183	Gymnocola inflata	676
B. hylalayana	315, 316	C. macouani	184	G. marginata	677
B. imbricata	317–319	C. ornata	185	Gymnomitron adustum	963
B. japonica	320, 321	C. schmidtii	186	Gymnomitron alpinum	963
B. linguiformis	322	C. shikokiana	187	G. brevisimum	964, 965
B. aff. mayebarae	323	C. spinosa	188–190	G. commutatum	969–968
B. oshimensis	324	C. trichomanis	191–193	G. concinnatam	969–971
B. parabidentula	325	C. yakusinensis	194, 195	G. coralloides	972, 973
B. pearsonii	326–329	Colura herzogii	196	G. crenatilobum	974
B. praerupta	330–333	C. tenuicornis	197	G. furiereanum	975
B. revoluta	334	Conoscyphus trapezooides	724–726	G. mucronulatum	976, 977
B. sikkimensis	335	Croscocalyx hellerianus	675	G. parvifluvum	978–980
B. tricrenata	336–338	Cryptocolea imbricata	835–837	G. rubidum	981
B. tridens	339–341	Cryptocoleopsis imbricata	961	G. sinense	982
B. trilobata	342, 343	Cephaloziaella contracta	480	Haplorhizium hookeri	3
B. uncigera	344–346	Cylindrocolea aff. kiiera	515–517	H. minioideos	4, 5
B. vietnamica	347–350	C. recurvifolia	518, 519	Harpantus flotavianus	956
B. yoshinagana	351, 352	Delavayella serrata	795, 796	H. scutatus	957
Biantheridion undulatifolium	674	Diplolepa sp.	838	Hattorianthus erinorus	21
Calycularia crispsula	12	Diplophyllum albicans	522	Herbertus arcticus	294, 295
C. laxa	13, 14	D. andrewsi	523, 524	H. armiiatus	296, 297
Calypogeia aeruginosa	738–740	D. nanum	525, 526	H. delavayi	298, 299
C. angusta	741	D. sibiricum	527, 528	H. kurzii	300, 301
C. apiculata	742, 743	D. taxifolium	529, 530	H. ramosus	302–304
C. arguta	744–748	Donnia plicata	531	H. aff. sendmerni	305
C. cispalata	749, 750	D. pectinata	198–200	Heteropogon laxa	632
C. granulata	751–755	D. commutata	201, 202	Heteroscyphus argutus	368–370
C. integrispina	756, 757	D. dactylophora	203	H. coalitius	371, 372
C. japonica	758, 759	D. herzogii	204	H. planus	373, 374
C. muellerae	760–762	D. thwaitesiana	205	H. tener	375–377
C. neesiana	763	D. yunnanensis	206	H. zollingeri	378–381
C. neesiana subsp. subalpina	764	Endogemma caespiticia	952–955	Ispagloss bicus erectus	678, 679
C. neogaea	765, 766	Eoclypeigia buscheriana	788, 789	I. decolorans	680
C. orientalis	767–769	Eremoneurum myricarum	807, 808	I. japonica	720, 721
C. sinensis	770–776	Fossombronia alaskaana	17, 18	Jackiella japonica	734–737
C. sphagnicola	777	F. japonica	19, 20	Jubula japonica	155
C. succina	778	Frullania apiculata	119, 120	J. javanica	156, 157
C. tosana	779–784	F. appendiculata	121	Jungermannia afoninae	809
C. vietnamica	785	F. austini	122	J. atravires	810–812
C. yoshinagana	786, 787	F. brotheri	123	J. borealis	813
Liverwort body diversity in Pacific Asia

<table>
<thead>
<tr>
<th>Species</th>
<th>Page Numbers</th>
<th>Page Numbers</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. exsertifolia</td>
<td>814-816</td>
<td>L. silvicola</td>
<td>651, 652</td>
</tr>
<tr>
<td>J. konstantinovae</td>
<td>817</td>
<td>L. ventricosa</td>
<td>653-655</td>
</tr>
<tr>
<td>Lejeunea alaskana</td>
<td>207, 208</td>
<td>L. ventricosa var. rigida</td>
<td>656</td>
</tr>
<tr>
<td>L. lata</td>
<td>209</td>
<td>Lophoziaepis excisa</td>
<td>657-659</td>
</tr>
<tr>
<td>L. anisophylla</td>
<td>210</td>
<td>Lophoziaepis grandis</td>
<td>660</td>
</tr>
<tr>
<td>L. aquatica</td>
<td>211</td>
<td>L. pellucida</td>
<td>661, 662</td>
</tr>
<tr>
<td>L. coccoc</td>
<td>212</td>
<td>L. polaris var. sphagnorum</td>
<td>663, 664</td>
</tr>
<tr>
<td>L. aff. discreta</td>
<td>213</td>
<td>L. propinquifera</td>
<td>665</td>
</tr>
<tr>
<td>L. fejiggi</td>
<td>214</td>
<td>Makinoa crustata</td>
<td>15, 16</td>
</tr>
<tr>
<td>L. flav</td>
<td>215, 216</td>
<td>Marsupella alata</td>
<td>983</td>
</tr>
<tr>
<td>L. hui</td>
<td>218</td>
<td>M. apertifolia</td>
<td>984, 985</td>
</tr>
<tr>
<td>L. japonica</td>
<td>219-221</td>
<td>M. apiculata</td>
<td>986</td>
</tr>
<tr>
<td>L. kodamae</td>
<td>222</td>
<td>M. boeckii</td>
<td>987-989</td>
</tr>
<tr>
<td>L. magohukai</td>
<td>223, 224</td>
<td>M. condensata</td>
<td>990, 991</td>
</tr>
<tr>
<td>L. neelgherriana</td>
<td>225, 226</td>
<td>M. emarginata</td>
<td>992-994</td>
</tr>
<tr>
<td>L. obscura</td>
<td>227, 228, 229</td>
<td>M. koreana</td>
<td>995</td>
</tr>
<tr>
<td>L. pallidifrons</td>
<td>230-232</td>
<td>M. pseudofunkii</td>
<td>996, 997</td>
</tr>
<tr>
<td>L. papilionacea</td>
<td>233</td>
<td>M. prucei</td>
<td>998-1000</td>
</tr>
<tr>
<td>L. parva</td>
<td>234-236</td>
<td>M. stolonifloris</td>
<td>1001</td>
</tr>
<tr>
<td>L. sordida</td>
<td>237</td>
<td>M. tabulosa</td>
<td>1002-1005</td>
</tr>
<tr>
<td>L. subacuta</td>
<td>238, 239</td>
<td>M. vietamica</td>
<td>1006</td>
</tr>
<tr>
<td>L. tuberculosa</td>
<td>240</td>
<td>M. yakushimensis</td>
<td>1007</td>
</tr>
<tr>
<td>Lepidozia fauriana</td>
<td>353, 354</td>
<td>Mastigolejeunea humilis</td>
<td>260, 261</td>
</tr>
<tr>
<td>L. omeiensis</td>
<td>355</td>
<td>Mastigophora dichloris</td>
<td>292</td>
</tr>
<tr>
<td>L. reptans</td>
<td>356</td>
<td>M. woodii</td>
<td>293</td>
</tr>
<tr>
<td>L. subintegra</td>
<td>357</td>
<td>Mesoptychia badensis</td>
<td>818, 819</td>
</tr>
<tr>
<td>L. subtransversa</td>
<td>358</td>
<td>M. chinensis</td>
<td>820</td>
</tr>
<tr>
<td>L. sylvingii</td>
<td>359</td>
<td>M. gillmannii</td>
<td>821, 822</td>
</tr>
<tr>
<td>L. trichodes</td>
<td>360</td>
<td>M. heterocolpos</td>
<td>823, 824</td>
</tr>
<tr>
<td>L. vitrea</td>
<td>361</td>
<td>M. heterocolpos var. arctica</td>
<td>825</td>
</tr>
<tr>
<td>Leptolejeunea balansae</td>
<td>241</td>
<td>M. ixioides</td>
<td>826</td>
</tr>
<tr>
<td>L. elliptica</td>
<td>242, 243</td>
<td>M. rutheana</td>
<td>827-830</td>
</tr>
<tr>
<td>L. latifolia</td>
<td>244</td>
<td>M. sahlbergii</td>
<td>831</td>
</tr>
<tr>
<td>L. maculata</td>
<td>245</td>
<td>M. assurianica</td>
<td>832-834</td>
</tr>
<tr>
<td>Leucosiajeunea paroica</td>
<td>246</td>
<td>Metacalypogeia alternifolia</td>
<td>790</td>
</tr>
<tr>
<td>L. surgida</td>
<td>247-249</td>
<td>M. cordifolia</td>
<td>791, 792</td>
</tr>
<tr>
<td>L. xanthocarpa</td>
<td>250-252</td>
<td>Metrolejeunea cucullata</td>
<td>262</td>
</tr>
<tr>
<td>Liochlaena sichuanica</td>
<td>797-800</td>
<td>Mesosolenostoma ochotense</td>
<td>839-843</td>
</tr>
<tr>
<td>L. subalata</td>
<td>801</td>
<td>M. orientale</td>
<td>844-847</td>
</tr>
<tr>
<td>Lobatriccardia coronopus</td>
<td>43</td>
<td>M. rubripunctatum</td>
<td>848-855</td>
</tr>
<tr>
<td>L. yunnanensis</td>
<td>44</td>
<td>Metzgeria lindbergii</td>
<td>37, 38</td>
</tr>
<tr>
<td>Lophocolea bidentata</td>
<td>382, 383</td>
<td>M. temperata</td>
<td>39</td>
</tr>
<tr>
<td>L. cuspidata</td>
<td>384</td>
<td>Microlejeunea punctiformis</td>
<td>263-265</td>
</tr>
<tr>
<td>L. heterophylla</td>
<td>385</td>
<td>Mnioloma fuscum</td>
<td>793, 794</td>
</tr>
<tr>
<td>L. korikawana</td>
<td>386</td>
<td>Moerckia blyttii</td>
<td>22</td>
</tr>
<tr>
<td>L. kurzii</td>
<td>387</td>
<td>Moerckia floreaniva</td>
<td>23, 24</td>
</tr>
<tr>
<td>L. minor</td>
<td>388-390</td>
<td>Monosolenium tenuum</td>
<td>6, 7</td>
</tr>
<tr>
<td>L. muricata</td>
<td>391, 392</td>
<td>Mylia anomala</td>
<td>672-714</td>
</tr>
<tr>
<td>L. vikimensis</td>
<td>393</td>
<td>M. taylorii</td>
<td>715, 716</td>
</tr>
<tr>
<td>Lophocoleajeunea planifolia</td>
<td>253, 254</td>
<td>M. verrucosa</td>
<td>717</td>
</tr>
<tr>
<td>L. euphina</td>
<td>255</td>
<td>M. vietamica</td>
<td>718, 719</td>
</tr>
<tr>
<td>L. nigricans</td>
<td>256, 257</td>
<td>Nardia assamica</td>
<td>1008-1011</td>
</tr>
<tr>
<td>L. subfuscus</td>
<td>258</td>
<td>Nardia breidleri</td>
<td>1012, 1013</td>
</tr>
<tr>
<td>L. zollingeri</td>
<td>259</td>
<td>N. compressa</td>
<td>1014</td>
</tr>
<tr>
<td>Lophozia ascendens</td>
<td>633, 634</td>
<td>N. geoscyphus</td>
<td>1015-1017</td>
</tr>
<tr>
<td>L. faurieana</td>
<td>635</td>
<td>N. harae</td>
<td>1018</td>
</tr>
<tr>
<td>L. guttulata</td>
<td>636</td>
<td>N. hiroshii</td>
<td>1019</td>
</tr>
<tr>
<td>L. heteromorpha</td>
<td>637</td>
<td>N. insecta</td>
<td>1020</td>
</tr>
<tr>
<td>L. lantranoviae</td>
<td>638, 639</td>
<td>N. japonica</td>
<td>1021-1023</td>
</tr>
<tr>
<td>L. longiflora</td>
<td>640, 641</td>
<td>N. pacifica</td>
<td>1024, 1025</td>
</tr>
<tr>
<td>L. munnarica</td>
<td>642</td>
<td>N. scalaris</td>
<td>1026, 1027</td>
</tr>
<tr>
<td>L. pallida</td>
<td>643</td>
<td>N. subfusca</td>
<td>1028-1030</td>
</tr>
<tr>
<td>L. saviolae</td>
<td>644-647</td>
<td>N. unispiralis</td>
<td>1031</td>
</tr>
<tr>
<td>L. schusteriana</td>
<td>648</td>
<td>Neohattoria hercoa</td>
<td>158</td>
</tr>
<tr>
<td>L. silvicola</td>
<td>649, 650</td>
<td>Neoorthocaulis attenuatus</td>
<td>681, 682</td>
</tr>
</tbody>
</table>
Protochilopsis

P. flagellata 865, 866
P. granulata 867–870
Phaskartiliana 871, 872
P. hattoriiana 873–875
P. horkawana 876, 877
P. infusca 878–880
P. infusca var. recondita 881–884
P. karilensis 885–888
P. marginata 889, 890
P. ovalifolia 891, 892
P. radicellosa 893, 894
P. rosulans 895–898
P. sordida 899
P. tetragona 900, 901
P. truncata 902–904
P. virgata 905, 906, 907
P. vulcanicola 908
P. yunnanensis 909
Pleurozia acicnosa 30
P. gigantea 31, 32
P. subinflata 33–36
Plicanthus birmensii 686, 687
P. hirtellus 688
Porella acutifolia 68, 69
P. caespitans 70
P. caespitans var. nipponica 71
P. campylophylla 72, 73
P. densifolia 74, 75
P. faurieri 76
P. gracillima 77
P. grandifolia 78
P. japonica 79–81
P. nitens 82
P. oblongifolia 83, 84
P. obtusata var. macroloba 85
P. perrottetiana 86
P. platyphylla 87
P. plumosa 88
P. reflexiasta 89
P. vernicosa 90
Prasanthus suecicus 1032
Protochlipsis grandiretis 532
Protosolenostoma faxiforme 910–915
Pseudolepidocolea andoi 285
Pseudolepidophyza debiliformis 689, 690
P. sudetic 691
Pseudotritomaria debiliformis 533–535
Ptilidium ciliare 275
P. pulcherrimum 276
Psychanthus striatus 266, 267
Radula acuminata 91, 92
R. apiculata 93
R. auriculata 94
R. caudica 95
R. cavitosa 96
R. complanata 97
R. constricta 98, 99
R. formosa 100–102
R. fulvifolia 103, 104
R. inouei 105–107
R. japonica 108
R. javanica 109
R. kofana 110, 111
R. madagascariensis 112
R. obtusifolia 113
R. oymensis 114

115 S. tundrae 620
116, 117 S. uliginosa 621, 622
118 S. undulata 623, 624
45–49 S. verrucosa 625, 626
50, 51 Schiffleria hyalina 505
52, 53 Schistochila algeria 279, 280
54, 55 S. blumei 281–283
56, 57 S. siucrea 284
58, 59 Schistochilopsis boliviensis 627
60 S. cornuta 628
61, 62 S. incisa 629
63, 64 S. setosa 630, 631
65 Schizophylophysis bidens 692, 693
66, 67 Schljakovia kundzeana 694
536 Schljakovianthus quadrilobus 695, 969
727, 728 Solenostoma appressifolium 916, 917
729 S. appressifolium var. minor 918
537 S. atrilliplicium 919
538 S. hilobum 920
539 S. confertissimum 921
540 S. flagellare 922
541, 542 S. flavorevolatum 923
543–546 S. gollanii 924
547–549 S. heterolobatum 925, 926
550 S. hokkaidense 927, 928
551 S. hyalinum 929
552, 553 S. lanigerum 930
554, 555 S. obvatum 931
556 S. obscurum 932–934
557–559 S. parvitectum 935
560, 561 S. polyrhizoides 936
562 S. pseudopyriformus 937, 938
563, 564 S. pulsilum 939
265 S. pyrilorum 940
566–568 S. rossicum 941, 942
569 S. rotundatum 943
570 S. schauffei 944
571, 572 S. sphaerocarpum 945
573 S. subellipticum 946
574 S. suborbiculatum 947, 948
575, 576 S. sunii 949, 950
577 S. ventroversum 951
578, 579 Southbya grollie 733
580, 581 Sphenolobopsis pearsonii 697, 698
582 Sphenolobus cavitosus 699
583 S. minutus 700, 701
584–587 Spruceanthus semirepandus 268–270
588, 589 Syzygicella autumnalis 481, 482
590 S. elongella 483
591 S. nipponica 484, 485
592, 593 Tetralophozia filiformis 702, 703
594 T. setiformis 704
595 Thyssanuthus acutus 271
596, 597 T. spathuliformis 272
598, 599 Trichocolea plumula 286–291
600–605 Trichocoleopsis saccata 278
606, 607 Tricholepidiodo nesii 362
608, 609 Trilophozia quinquedentata 705
610, 611 Tritomaria exspecta 706
612, 613 T. koreana 707, 708
614 T. setulata 280
615 Tuzibanthus chinsenii 273, 274
616 Vietamillia epiphytica 710, 711
617, 618 Xenochila integrifolia 802
619 Zoopsis liukiuensis 363

Received 20 September 2021 Accepted 21 October 2021